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2 Basic concepts

We will assume that the following concepts are known:

• Vector, column vector, row vector, transpose. Recall that x is a column vector, xt is a

row vector.

• Addition of vectors (always of the same size!) and multiplication of vectors by a number

(scalar).

• Scalar product (or dot product) of vectors (always of the same size). Recall that x ·yt =

y · xt but x · yt 6= xt · y (!!!) (the latter is an n × n matrix if the size of x is n). Two

vectors with scalar product zero are called orthogonal.

Remark: In many books the t superscript is omitted, i.e. x · y is used for x · yt With

this slightly abusing convention the scalar product is commutative, i.e. x · y = y · x

• Matrix, transpose matrix, matrix addition, multiplication of matrices by a scalar. Note

that the vector is a special case of the matrix (n× 1 matrix)

• Matrix-vector and matrix-matrix multiplication (sizes must match). Not commutative.

• Basic algebraic manipulations with vectors and matrices (associativity, commutativity,

distributivity for addition and scalar multiplication). Null vector and null matrix (or

zero matrix), identity matrix.

• n×1 vectors can be represented in the n-dimensional Euclidean space Rn by arrows start-

ing from the origin and ending at the point (x1, x2, . . . xn), where x = (x1, x2, . . . xn)t.

Of course we can “see it” only for n = 2, 3, but this is just our limitation. In almost

all cases the geometric intuition based upon the 2 or 3-dimensional picture is valid in

higher dimensions. It is usually worth making pictures.
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• More generally, one can consider arrows pointing from any point A = (a1, a2, . . . an) to

any other point B = (b1, b2, . . . bn) of the n-dimensional space. This arrow is identified

with the vector (b1 − a1, b2 − a2, . . . bn − an). In other words, this arrow is the vector

(b1 − a1, b2 − a2, . . . bn − an) with its starting point shifted to A. In most cases people

talk about the vector from A to B, or the vector ~AB, which is a slight abuse of language

for the arrow from A to B, but it never causes any confusion.

• Geometry of vector addition and scalar multiplication (paralellogramm rule)

• Length of a vector x is ‖x‖ =
√

xt · x =
√
x2

1 + . . .+ x2
n. The vector is called normalized

if its length is 1. The angle θ between two vectors x,y is defined via its cosine as

cos θ =
xt · y

‖x‖ ‖y‖

In case of n = 2, 3 these definitions coincide with the usual geometric notions of the

length and angle. In higher dimensional Euclidean spaces these are the basic definitions

of the geometry in those spaces.

• Elementary geometry of matrix multiplications in the plane and space. Scaling, rotation,

projection, reflection on the level of [D] Chapter 4. and Chapter 12 of Salas-Hille.

The following concepts are also supposedly known, nevertheless we list them to fix the

terminology and notation:

Definition 2.1 The linear combination of the vectors x1,x2, . . .xk ∈ Rn with the numbers

(scalars) c1, c2, . . . ck is the vector

c1x1 + c2x2 + . . .+ ckxk
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in Rn. A vector y ∈ Rn is said to be a linear combination of the vectors x1,x2, . . .xk ∈ Rn if

there exist numbers c1, c2, . . . ck such that

y = c1x1 + c2x2 + . . .+ ckxk. (2.1)

In this case we also say that y depend linearly on the vectors x1,x2, . . .xk. It can happen that

the numbers c1, c2, . . . ck are not unique in the above representation.

Definition 2.2 The span of the vectors x1,x2, . . .xk ∈ Rn is the set of all possible linear

combinations of these vectors, i.e. all the vectors of the form

c1x1 + c2x2 + . . .+ ckxk

as c1, c2, . . . ck independently runs through the real numbers.

Definition 2.3 The set of vectors x1,x2, . . .xk ∈ Rn is linearly independent if

c1x1 + c2x2 + . . .+ ckxk = 0

implies c1 = c2 = . . . = ck = 0. Otherwise this set is called linearly dependent.

REMARK: Linear independence or dependence is the property of a SET OF VECTORS!

With a slight abuse of language we often say that the vectors x1,x2, . . .xk are linearly depen-

dent or independent, but keep in mind that this is a property of the ensemble of these vectors

and not a property of individual vectors. It can happen that x1,x2, . . .xk is linearly indepen-

dent, but adding one more vector xk+1 to this set, the new set becomes linearly dependent.

The following statements are equivalent definitions of linear independence:

Equivalent definition 2.4 The set of vectors x1,x2, . . .xk ∈ Rn is linearly dependent if

at least one of them is expressible as a linear combination of the rest.
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Equivalent definition 2.5 The set of vectors x1,x2, . . .xk ∈ Rn is linearly independent

if any vector in the span of these vectors can be uniquely represented as a linear combination

of x1,x2, . . .xk, i.e. the numbers c1, c2, . . . ck in (2.1) are unique.

REMARK: The key word here is the “unique”. Every vector in the span can be represented

as a linear combination of the spanning vectors, but only linearly independent spanning vectors

give rise to unique representation. In particular the vector y = 0 has a unique representation

using c1 = c2 = . . . = ck = 0, this is exactly the first definition.

REMARK: It cannot happen that some vectors in the span of x1,x2, . . .xk have a unique

representation, some others have several. Either ALL vectors in the span are uniquely repre-

sented (case of lin. independent vectors) or ALL vectors have many (in fact infinitely many)

representations (case of lin. dependent vectors).

We already mentioned that the linear dependence/independence is a the property of the set

of vectors. If you remove a vector from a linearly independent set, it remains lin. independent.

Similarly, if you add a new element to a lin. dependent set, it remains lin. dependent. However,

if you remove a vector from a lin. dependent set, both situations can occur, i.e. the smaller

set could remain lin. dependent, but it also could become lin. independent (Give examples

for both (*)). Similarly, if you add a new vector to a lin. dependent set, both situations can

occur (again, give examples (*)).

The following fact is often useful

Lemma 2.6 Let x1,x2, . . .xk be nonzero, pairwise orthogonal vectors in Rn. Then they are

linearly independent.

Proof: Suppose that there is a linear combination which gives the zero vector

c1x1 + c2x2 + . . .+ ckxk = 0 (2.2)



LINEAR ALGEBRA: THEORY. Version: August 12, 2000 17

Take the scalar product of this equation with the vector xt1

xt1 ·
(
c1x1 + c2x2 + . . .+ ckxk

)
= xt1 · 0 = 0

Notice that all products xt1 · xj are zero by orthogonality, except for j = 1. Hence

c1‖x1‖
2 = 0

and since x1 is nonzero, we must have c1 = 0. Similarly, if you multiply the equation (2.2)

by xt2, you get c2 = 0 etc. Hence from (2.2) it follows that all coefficients are zero, i.e. the

original vectors are linearly independent. 2

Definition 2.7 A subset S of vectors in Rn is called a linear subspace if it is closed under

addition and scalar multiplication. This means that if v,w ∈ S then v + w ∈ S and αv ∈ S

as well for any number α.

REMARK: In most cases we omit the word “linear” and we just refer to it as “subspace”

or even only “space”. Sometimes we add that a “subspace of Rn”.

REMARK: The linear span of any set of vectors x1,x2, . . .xk ∈ Rn is a subspace (CHECK(*)).

Definition 2.8 A set of vectors v1,v2, . . .vm in a given subspace S of Rn is called a basis

of S if:

S = Span{v1,v2, . . .vm}

AND v1,v2, . . .vm are linearly independent.

Notice that it is not clear that basis exists. You might think it is an unnecessary subtlety,

but as we explain below, this allows us thinking of subspaces as objects like “lines”, “planes”

etc. It is actually the first nontrivial theorem of linear algebra, and we will prove it below.
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Theorem 2.9 Any subspace S of Rn has a basis

REMARK: A basis is the “most economical” set to span a given subspace S in a sense

that it contains the fewest possible elements. In particular, if you remove any element from a

basis, then it does not span S any more (otherwise the original set were not lin. independent

CHECK (*)). If, on contrary, you add a new element to a basis, then it stops being linearly

independent (CHECK (*)). In fact you can use these properties to give equivalent definitions

of the basis

Equivalent definition 2.10 Any maximal set of linearly independent vectors
{
v1,v2, . . .vm

}
in a given subspace S of Rn is a basis of S. Maximality means that if you add any more vector

to this set from S, it stops being linearly indepedent.

Equivalent definition 2.11 Any minimal set of vectors
{
v1,v2, . . .vm

}
that span a given

subspace S of Rn is a basis of S. Minimality means that if you remove any vector from this

set, then it will not span S any more.

It is not completely trivial that these definitions are really equivalent to the original one.

The key is the following lemma, which states that every linearly independent set can be

extended to a basis by adding more vectors, and conversely, any set of spanning vectors can

be reduced to a basis by deleting some vectors. In particular it gives good way to construct

bases and in particular it proves Theorem 2.9.

Lemma 2.12 (i) Let
{
v1,v2, . . .vm

}
be a set of linearly independent vectors in a nonzero

subspace S of Rn. Then it can be extended by adding some more vectors to form a basis of S,

i.e. there exists further vectors vm+1, . . .vk such that
{
v1,v2, . . .vk

}
is a basis in S.

(ii) Let
{
v1,v2, . . .vm

}
be a (finite) set of vectors that span a nonzero subspace S of Rn.

Then it can be reduced to a basis by deleting certain elements from it.
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We omit the detailed proof, but here is the idea (DO THE PROOF yourself (*)):

Part (i) If the set does not span yet, then add any vector (call vk+1) to it from the

complement of the span. First show that this new bigger set is also linearly independent

(assume not and prove by contradiction!). Then ask again if this bigger set spans or not.

If yes, then you have a basis. If not, then again adjoin a new vector, call vk+2, show that

the new set is linearly independent etc. The procedure must stop at most when you have n

vectors, otherwise you would have n+1 linearly independent vector in Rn. This is apparently

impossible. But the rigorous proof is not completely trivial, and in fact we will need the

Gaussian elimination to see this (see Theorem 3.3).

Part (ii) If the given vectors are linearly independent, then we have a basis. If not, then

x1v1 + x2v2 + . . .+ xmvm = 0

for some numbers xj , and not all them are zero. Suppose xj 6= 0. Then vj can be expressed

as a linear combination of the rest (CHECK (*)), hence one can remove vj from the set and

the remaining vectors still span S (CHECK!) Now keep on reducing until what remains is

indepedent. Since you started with finitely many vectors, it will happen at worst by the time

we have reduced the set to a single nonzero vector. 2

DELICATE REMARK: Note that both constructions prove independently Theorem 2.9.

However we needed some extra information. If we want to use (i) to prove Theorem 2.9, then

in the proof of (i) we needed Theorem 3.3 (to be proven later by Gaussian elimination). It

seems simpler to use (ii) to prove Theorem 2.9, i.e. start with a spanning set and reduce it to

a basis. Apparently nothing extra was used, EXCEPT, that you need a finite spanning set!

Infinite spanning set exists, just take all vectors in S, but if you read the proof of (ii) above

carefully, then finiteness of the set was heavily used (WHY?(*)). It seems completely trivial

that every subspace S of Rn has a finite spanning set if you think about lines, planes etc. But
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do not forget that a subspace was defined only by a few properties (Definition 2.7), and apriori

it is not clear that a subspace “looks like” a line or a plane. In fact it is exactly Theorem 3.3

which proves that every subspace is spanned by a finitely many linearly independent vectors,

hence it “looks like” a line or a plane or higher dimensional generalization of them.

The conclusion is that we can prove Theorem 2.9 if we EITHER know Theorem 3.3 OR

we deal with subspaces with a finite spanning set.

The following crucial property follows immediately from these definitions:

Theorem 2.13 Fix a basis v1,v2, . . .vm in a given subspace S of Rn. Then any vector v ∈ S

can be written as a linear combination of the basis vectors as

v = c1v1 + c2v2 + . . .+ cmvm

with some numbers c1, c2, . . . , cn, and these numbers are uniquely determined. In this case

we say that the vector v is written in the basis v1,v2, . . .vm with coefficients (or coordinates)

c1, c2, . . . cm.

There are many many different bases for a given subspace. However, the number of

elements in all basis sets is the same. This is the second nontrivial theorem of linear algebra

(for the proof see Proposition 2.4.20 of [HH])

Theorem 2.14 Any two bases of a subspace S of Rn has the same number of elements and

this number is called the dimension of S.

EXAMPLE 1: The zero vector itself, S = {0}, and the full space S = Rn are subspaces

of Rn. The dimension of S = {0} is zero, the dimension of S = Rn is n. Sometimes these are
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called trivial subspaces. The standard basis of Rn is denoted by

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . en =


0
0
...
n

 . (2.3)

EXAMPLE 2: For n = 2, apart from the trivial subspaces of R2, there are one dimensional

subspaces. These are straight lines passing through the origin, i.e. they are of the form

S = {tv : t ∈ R} for some nonzero vector v ∈ R2. A line that does not go through the

origin is NOT a subspace (is not closed under addition).

EXAMPLE 3: For n = 3, apart from the trivial subspaces of R3, there are one and two

dimensional subspaces. Every straight line passing through the origin is a one dimensional

subspace, they are of the form S = {tv : t ∈ R} for some nonzero vector v ∈ R3. Every plane

passing through the origin is a two dimensional subspace. They can be represented as the

span of their two lin. independent vectors, i.e. they are of the form S = {tv + sw : t, s ∈ R}

for some linearly independent set {v,w} of vectors in R3. Naturally, these representations

are not unique.

Lines or planes not passing through the origin are NOT subspaces. However, these can

be represented as u + S, where S is a line or plane and u 6∈ S. These are called affine sets.

(Sometimes people call them “affine subspaces”, but this is too much abuse of language, since

they are not subspaces).

The dimension measures the “size” of a subspace; clearly a point (zero dimensional space)

is “smaller” than a line (one dimensional space) which is “smaller” than a plane etc. We have

Theorem 2.15 Let S1 and S2 be subspaces of Rn, and suppose that S1 ⊂ S2. Then dim S1 ≤

dim S2. Moreover if S1 is strictly contained in S2, i.e. S1 6= S2, then dim S1 < dim S2



LINEAR ALGEBRA: THEORY. Version: August 12, 2000 22

Proof: Start with a basis in S1. These vectors form a linearly independent set in S2, but

they do not span the whole S2 unless S1 = S2. Hence one can add more vectors to this set from

S2 to keep linear independence. In other words the number of maximal linearly independent

set in S2 is bigger than the number of basis elements of S1. 2

Finally we introduce the concept of orthogonal and orthonormal basis:

Definition 2.16 A basis v1,v2, . . .vm of a subspace S of Rn is called orthogonal if the basis

vectors are pairwise orthogonal, i.e. vti · vj = 0 for all i 6= j. If, in addition, the vectors are

normalized, i.e. ‖vi‖ = 1, then the basis is called orthonormal.

A different and bit more formal treatment of this material can be found on

http://www.math.gatech.edu/ carlen/1502/html/pdf/dim.pdf


