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4 Using Gaussian elimination: Column space, nullspace,

rank, nullity, linear independence, inverse matrix

4.1 An example

The following example will be used to illustrate the concepts. Let

A =


1 2 −1 3 0
−1 −2 2 −2 −1
1 2 0 4 0
0 0 2 2 −1

 and b =


1
1
6
7


(recall the convention: this is an n× k matrix with n = 4 and k = 5).

Problem 4.1 Find the full solution to Ax = b

SOLUTION: The row echelon form of [A|b] is (CHECK (*))

Row echelon =


1 2 −1 3 0

∣∣∣ 1

0 0 1 1 −1
∣∣∣ 2

0 0 0 0 1
∣∣∣ 3

0 0 0 0 0
∣∣∣ 0

 (4.1)

(pivots underlined). The reduced row echelon form

Reduced row echelon =


1 2 0 4 0

∣∣∣ 6

0 0 1 1 0
∣∣∣ 5

0 0 0 0 1
∣∣∣ 3

0 0 0 0 0
∣∣∣ 0

 (4.2)

Hence the full solution is

x =


6
0
5
0
3

+ s


−2
1
0
0
0

+ t


−4
0
−1
1
0

 (4.3)

with free parameters s = x2 and t = x4.
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4.2 Definitions

First recall the definitions. Let A be an n× k matrix.

Definition 4.2 The linear subspace of Rn spanned by the columns of A is called the column

space of A. It is also called the range or the image of A. It is denoted by R(A) or Im(A)

(we will use R(A)) and it can be written as

R(A) := {Ax : x ∈ Rk}

i.e. as the set of all linear combinations of the columns. The dimension of R(A) is the rank

of A.

Definition 4.3 The set of elements x ∈ Rk which solve Ax = 0 is called the null-space of

A and is denoted by N(A):

N(A) := {x ∈ Rk : Ax = 0}.

It is easy to see (CHECK(*)) that N(A) is a linear subspace of Rk. Its dimension is called

the nullity of A.

Of course one has to check that these are really subspaces (i.e. closed under addition and

scalar multiplication). This is left as an exercise (*).

The relation of these sets to the solutions of

Ax = b (4.4)

is the following:

• The column space is used to decide whether (4.4) is solvable or not. This equation is

solvable if and only if b ∈ R(A).
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• The null space is used to decide how many solutions you have, once you know that you

have at least one, i.e. b ∈ R(A). If the nullspace is trivial, N(A) = {0}, then there is

exactly one solution. If the nullspace is nontrivial, then you have free parameters in the

general solution to (4.4). The number of free parameters equals to the nullity of A.

• The set of solutions to Ax = b is an affine set (“affine subspace”). It has the form

x = x0 +N(A) = {x0 + y : y ∈ N(A)} where x0 is any fixed solution. In other words,

the solution set is an affine set which is a translate of N(A). The translating vector x0

is certainly not unique.

How to recognize these sets from the Gauss elimination? You can ask this question in

two different ways. You may want to find a basis in both spaces, i.e. represent these spaces

as a linear combination of a (minimal) spanning set. But you may be interested in the so

called “membership” problem, i.e. given a vector, you want to decide whether it belongs to

the space or not. This latter is especially important for the column space.

4.3 Basic problems

Problem 4.4 Does a given vector b belong to R(A) or not?

SOLUTION: Run the Gauss elimination for the extended matrix [A|b]. If the last column

has a pivot element, then Ax = b is not solvable, i.e. b 6∈ R(A). Otherwise b ∈ R(A).

EXAMPLE: In the example in Section 4.1 the last column (the column of b) in the echelon

matrix does not contain pivot. Hence the equation is solvable. For this purpose it does not

matter whether you look at the row echelon or reduced row echelon form.
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If the original b were changed to b′ =


1
1
6
2

, then the row echelon form (4.1) would be

changed to (CHECK (*)) 
1 2 −1 3 0

∣∣∣ 1

0 0 1 1 −1
∣∣∣ 2

0 0 0 0 1
∣∣∣ 3

0 0 0 0 0
∣∣∣ 1

 .

Since there is a pivot in the last column, the equation Ax = b′ has no solution.

Problem 4.5 Find the constraint equations for the column space R(A) of a given matrix. In

other words, find equations for the coordinates of b ∈ R(A) (general membership problem).

SOLUTION: This is essentially the previous problem. Run the Gauss elimination with a

general vector b. The constraint equations are found in the last entry of those rows of the

eliminated augmented matrix [A|b] whose all other entries are zero.

EXAMPLE: In the example in Section 4.1 we have to run the elimination for the matrix

A =


1 2 −1 3 0

∣∣∣ b1

−1 −2 2 −2 −1
∣∣∣ b2

1 2 0 4 0
∣∣∣ b3

0 0 2 2 −1
∣∣∣ b4


with a general last column. The row echelon form is

Row echelon =


1 2 −1 3 0

∣∣∣ b1

0 0 1 1 −1
∣∣∣ b1 + b2

0 0 0 0 1
∣∣∣ −2b1 − b2 + b3

0 0 0 0 0
∣∣∣ −b2 − b3 + b4
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Hence the constraint for b ∈ R(A) is

−b2 − b3 + b4 = 0.

If you have more fully zero rows on the left of the vertical line, then the constraint is a system

of homogeneous equations for b, and the coordinates of b must satisfy all of them in order to

be in R(A).

Problem 4.6 Find a basis in R(A).

SOLUTION: The pivotal columns of A form a basis for R(A), i.e. those columns in A

which correspond to the columns in the row-echelon form of A (and not in [A|b]!) containing

the leading ones. The dimension of R(A) hence is the number of pivot columns.

Proof: See theorem 2.5.5 in [HH]. The idea is that the pivotal columns in the row echelon

(or reduced row echelon) form clearly span the column space of the echelon matrix (WHY?

(*)) and they are independent (WHY? (*)). Moreover the spanning property remains invariant

under the elementary operations. 2

Be CAREFUL: you have to pick the columns from the original matrix and not from the

echelon matrix. The echelon matrix just tells you which columns to pick. For this purpose

you can use both the row-echelon matrix or the reduced row-echelon matrix (the leading ones

are the same in both), and you can forget about the the column of b.

EXAMPLE: In the example in Section 4.1 a basis of R(A) is
1
−1
1
0

 ,

−1
2
0
2

 ,


0
−1
0
−1


i.e. the first, third and fifth columns of A, since these columns contained pivots in (4.1).
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Problem 4.7 Find a basis in N(A).

SOLUTION: Gauss elimination gives the full solution to any equation Ax = b, in partic-

ular you can choose b = 0. It means that the augmented matrix has a zero last column [A
∣∣∣0],

and we can safely forget about it, just do the elimination for A up to the reduced row echelon

form. Let k1, k2, . . . kp be the positions of the nonpivotal columns (index of the free variables).

Choose the vectors vi ∈ Rk for i = 1, 2, . . . p such that its ki-th entry be one, all other kj-th

entries be zero and solve Avi = 0. Such vectors form a basis of N(A). The dimension of N(A)

is clearly the number of nonpivotal columns, or the number of free variables.

For the proof see Theorem 2.5.7 in [HH]. The idea is to write the full solution to Ax = 0 as

a linear combination of p vectors with the p free parameters as coefficients. Recall that when

solving a linear system of equations, the result of the Gaussian elimination is exactly in this

form. Then one can show that these p vectors are linearly independent, since each contains a

1 at a place where all others have zero entry.

EXAMPLE: In the example in Section 4.1 a basis of N(A) is
−2
1
0
0
0

 ,

−4
0
−1
1
0

 (4.5)

since these are the vectors whose coefficients are the free parameters. Notice that each vector

contains a 1 at the place of the corresponding free parameter and the other vector has zero

entry at that slot. This structure follows from the way how you obtained these vectors from

(4.2).

Problem 4.8 Given vectors v1,v2, . . .vk ∈ Rn. Are they linearly independent or dependent?
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SOLUTION: Form the n× k matrix A = [v1 v2 . . . vk] from these vectors as its columns.

The vectors are linearly independent if and only if N(A) = {0}, i.e. the nullspace is trivial.

This is because the vector Ax is exactly the linear combination of the given vectors with coeffi-

cients x1, x2, . . . xk. The vectors are linearly independent if only the trivial linear combination

gives the zero vector. In other words, if the equation Ax = 0 has only trivial solution, i.e. the

nullspace of A is trivial.

In practical terms: after forming the matrix A, run the Gauss elimination. If there is a

nonpivot column, then the original vectors are linearly dependent (and the nontrivial choice

of the free variable gives a nontrivial linear dependence among these vectors). If all columns

are pivot columns, then the original vectors are lin. independent.

EXAMPLE: In the example in Section 4.1 the columns are not linearly independent since

there are nonpivot columns. The nontrivial elements of the nullspace give a nontrivial linear

combination of the columns, e.g. from the first basis vector of N(A) in (4.5) you can read off

that

(−2)


1
−1
1
0

+ 1


2
−2
2
0

 =


0
0
0
0


or from the second basis vector in (4.5) you can read off that

(−4)


1
−1
1
0

+ (−1)


−1
2
0
2

+ 1


3
−2
4
2

 =


0
0
0
0

 .
These are just examples of nontrivial linear combinations among the column vectors.

Problem 4.9 Given a vector b and a set of other vectors v1,v2, . . .vk in Rn. Write b as a

linear combination of these vectors (if possible)
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SOLUTION: Again form the n × k matrix A = [v1v2 . . .vk] from these vectors as its

columns. Then the solution to Ax = b (if exists) exactly gives you the coefficients x1, x2, . . . xk

with which you have to form the linear combination of the v’s to get b. This is really just a

reformulation of the original problem of solving Ax = b.

4.4 Dimension formula (Law of conservation of dimensions)

From Problem 2 and 3 above we see that

rank(A) = dimR(A) = #pivot columns

nullity(A) = dim Ker(A) = #non-pivot columns

Hence Dimension formula

rank(A) + nullity(A) = #columns = k. (4.6)

In the example in Section 4.1 we have that rank(A) = 3, nullity(A) = 2 and clearly

3 + 2 = 5 is the number of columns.

The dimension formula has several consequences. For example we can easily give another

proof of Theorem 3.3 (although this is a bit cheating since in our setup Theorem 3.3 was

already used to show that basis exists)

Corollary 4.10 Let v1,v2, . . .vk be vectors in Rn. If k > n (i.e. you have more vectors than

their size), then these vectors are linearly dependent.

Proof: Since R(A) is a subspace of Rn, its dimension is at most n, i.e. rank(A) ≤ n. Hence

it follows from (4.6) that nullity(A) ≥ k − n ≥ 1, i.e. N(A) is nontrivial. Hence the columns

are linearly dependent. 2
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REMARK: This statement implies in particular, that if you have more unknowns in a

linear system of equations than equations, then you do not have unique solution. WARNING:

It does not mean that you have solution at all! All it says is that IF you have at least one

solution, then you have infinitely many.

Corollary 4.11 Let A be an n × n square matrix. Then Ax = b has solution for all b if

and only if the only solution to Ax = 0 is the zero vector (in other words, A has linearly

independent columns, or A has full rank).

Proof: From (4.6) it is clear that in case of k = n (square matrix), the condition that

rank(A) = n (full rank) and that nullity(A) = 0 are equivalent. 2

4.5 Relation between the “column-rank” and “row-rank”

The rank is defined as the maximal number of linearly independent columns. This is really

a “column-rank”, since it focuses on the columns of the matrix A. One could equally ask for

the maximal number of linearly independent rows of A, which would be the “row-rank” of

the matrix (be careful: the “row-rank” is NOT the nullity). Notice that the “row-rank” of A

is clearly the same as the “column-rank” of the transpose At. The following fact is a basic

result:

Theorem 4.12 For any matrix A

rank(A) = rank(At) (4.7)

i.e. the “column-rank” and the “row-rank” coincide. This common number is the number of

pivot elements. In particular the number of pivot elements in the echelon forms of A and At

coincide (though these forms look completely different, even their sizes are different!!)
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First proof of Theorem 4.12: Prop. 2.5.12 in [HH]. The basic idea is that the row space

of A and the row space of the reduced row echelon form Ã of A are the same. It is clear that

the rows of Ã can be represented as linear combinations of the rows of A since this is exactly

what the elementary steps did. But notice that the elementary operations are reversible; you

can go back from Ã to A again by elementary operations. Hence the rows of A are expressible

as linear combinations of the rows of Ã.

But it is clear that the dimension of the row space of Ã is the same as the number of pivots:

the nonzero rows in Ã are linearly independent, since each contain a 1 at a place where all

other row has entry zero. Finally, the number of pivots is the same as rank(A) (see Problem

4.6), which proves (4.7). 2

We give another proof of this theorem which uses the following

Lemma 4.13 The spaces N(A) and R(At) are orthogonal complements of each other within

Rk. This means that any vector from N(A) is orthogonal to any vector from R(At), and the

vectors in these two spaces span Rk.

Proof: (See [D] Theorem 1. p. 79) Pick a vector x ∈ N(A), i.e. Ax = 0. Hence for any

vector y ∈ Rn we have yt ·Ax = 0. Taking the transpose of this relation, we have xt ·Aty = 0.

This is true for any y, hence x is orthogonal to the whole column space of At.

Suppose now that a vector x ∈ Rk is orthogonal to R(At). Then, exactly as before, we

conclude that x ∈ N(A).

From these two statements not just the orthogonality of R(At) and N(A) follows, but their

spanning property as well. To show that they actually span Rk, we suppose, on contrary, that

they don’t and we try to get a contradiction. Consider the span of N(A) and R(At), if this is

not the whole Rk, then there is a nonzero vector x ∈ Rk which is orthogonal to both N(A)

and R(At). But we have seen that if a vector is orthogonal to R(At), then it must be in N(A),
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hence it cannot be orthogonal to that. This contradiction shows that the span of N(A) and

R(At) is the whole Rk. 2

From this lemma, Theorem (4.12) easily follows.

Second proof of Theorem (4.12) Choose a basis v1, . . . ,vp in N(A) and a basis w1, . . . ,wr

in R(At). Here p is the nullity of A and r is the rank of At. Consider the union of these two

bases, i.e. the set
{
v1, . . . ,vp,w1, . . . ,wr

}
. It is easy to see that this is a linearly independent

set (WHY? (*) Hint: mimic the proof of Lemma 2.6), hence it is a basis in the span of R(At)

and N(A), which is Rk. Therefore p + r = k, i.e.

nullity(A) + rank(At) = k

From (4.6) we have

rank(A) + nullity(A) = k

and from these two relations (4.7) follows. 2

A different presentation of the relation between various ranks can be found on

http://www.math.gatech.edu/ carlen/1502/html/pdf/rank.pdf

4.6 Inverse matrix

Definition 4.14 Let A be an n× n square matrix (only square matrices have inverses). The

matrix B satisfying BA = AB = I is called the inverse of A and is denoted by B = A−1

REMARK: It is enough to require that AB = I (right inverse) OR that BA = I (left

inverse), the other one will follow. This is a quite nontrivial fact (since matrix multiplication is

noncommutative, i.e. in general AB = BA is not true), and the convenient notation hides it.

For its proof, first notice that if you have both right and left inverses (i.e. you have matrices

B,C such that AB = I and CA = I), then B = C easily follows (WHY?(*) Hint: compute
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CAB). But how do you know that left inverse (C) exists if you know only that the right

inverse (B) exists? As the problem below shows, B exists if A has full rank. But then, by

Theorem (4.12), you know that At has full rank, too. Hence At has a right inverse, say D, i.e.

AtD = I. But then C := Dt is a left inverse of A, i.e. CA = I (WHY? (*)). 2

Problem 4.15 Compute A−1 for a given A.

SOLUTION: Consider the “double” matrix [A|I], and perform a row reduction. A is

invertible if and only if the reduced row echelon form of [A|I] is of the form [I|B] with some

matrix B (i.e. each column of A has a pivot). In this case B is the inverse matrix.

Proof: Finding B such that AB = I really amounts to finding the columns of B =

[v1 v2 . . .vn] such that Avj = ej for all j = 1, 2, . . . n. When row reducing [A|I] you actually

solve these n systems of equations simultaneously.

Theorem 4.16 The following facts are equivalent for an n× n square matrix A:

(i) A is invertible

(ii) There are exactly n pivot elements in the reduced row echelon form of A.

(iii) N(A) = {0}

(iv) rank(A) = n

(v) The equation Ax = b has a unique solution for any b ∈ Rn. This solution is given by

x = A−1b.

(vi) The determinant of A is non-zero.

A matrix satisfying these properties is called regular or nonsingular.

REMARK 1.: It seems tempting to solve a linear system of equations Ax = b by simply

computing A−1 and then taking x = A−1b. Theoretically this is perfect if the matrix is

invertible. However, there are two troubles with it:
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(a) One would like to solve nonsquare or degenerate equations as well, when you expect

many solutions. In this case A−1 does not exist (for rectangular matrices it is even not defined

in this way) and not necessarily because there is no solution; rather the opposite. The inverse

of a singular (square) matrix does not exists because for some b there is no solution, for some

other b there are infinitely many. Nonexistence of the inverse matrix does not mean that

Ax = b has no solution!

(b) Computing all entries of A−1 is a big work. If you solve Ax = b directly, it is much

cheaper. Of course if you have to solve this equation for many different b, then computing

A−1 could pay off. But remember that the Gaussian elimination also has a tool (Section 8.2

in the Appendix) to facilitate this problem and avoid redoing the same elimination. This

method is usually faster than computing A−1.

Proof of Theorem 4.16. We prove the equivalence of the first five statements cyclically:

(i) =⇒ (v): If A−1 exists, then x = A−1b makes sense. It is clear that this vector solves

the equation, since Ax = A(A−1b) = AA−1b = Ib = b.

(v) =⇒ (iv). If the equation Ax = b solvable for all b, then A must have full rank.

(iv) =⇒ (iii) See the Dimension formula (4.6)

(iii) =⇒ (ii) Nullspace is trivial if there are no free variables, i.e. every column contains

a pivot.

(ii) =⇒ (i) The n pivot elements guarantee that the reduction of the enlarged matrix [A|I]

ends up with [I|B]. As we have seen, B is the inverse matrix. 2

We will not prove rigorously that condition (vi) is also equivalent to all the others, since

it relies on Cramer’s formula and on the definition and some properties of the determinants
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listed in the “Steps to compute determinants” at the end of Section 9.1. We did not prove

them, but all of them follow from elementary arithmetics.

Here we just remark that accepting Cramer’s formula (Section 9.2), it is clear that if

det(A) 6= 0, then for any b there exists a solution to Ax = b, i.e. (iv) follows. For the

opposite statement, we have to use that the fact whether a determinant is zero or not does

not change under the Gaussian elimination steps. For this statement see the “Steps to compute

determinants” at the end of Section 9.1. Accepting this, it is clear that if det(A) = 0, then

there could not be pivots in all columns after the elimination, since then the determinant of

the reduced matrix would be 1 (since it is upper triangular, so the determinant is the product

of the diagonal elements). Hence det(A) 6= 0 if and only if the matrix is regular.


