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6 Gram-Schmidt procedure, QR-factorization, Orthog-

onal projections, least square

Class notes with a few problems and their solutions are found

For Gram-Schmidt and QR by Eric Carlen

http://www.math.gatech.edu/~carlen/1502/html/pdf/gram.pdf

http://www.math.gatech.edu/~carlen/1502/html/pdf/qr.pdf

For Gram-Schmidt and QR by Michael Lacey

http://www.math.gatech.edu/~lerdos/math2601/QR.pdf

For orthogonal complements and projections by Eric Carlen

http://www.math.gatech.edu/~carlen/1502/html/pdf/proj.pdf

http://www.math.gatech.edu/~carlen/1502/html/pdf/prj.pdf

For orthogonal complements and projections by Michael Lacey

http://www.math.gatech.edu/~lerdos/math2601/projection.pdf

For Least squares by Eric Carlen

http://www.math.gatech.edu/~carlen/1502/html/pdf/least.pdf

In this review class, we will mostly follow Eric Carlen’s presentation. For examples and

more details, see the webpages above. Here we just state the most important results (some of

them are not stated as explicitly in Carlen’s notes as here).
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6.1 Gram-Schmidt orthogonalization procedure

This is an algorithm to find an orthonormal basis (ONB, for brevity) {u1,u2, . . .u`} in the

span of a given set of vectors {v1,v2, . . .vk}. The algorithm is successive; first it finds an

ONB in V1 = Span{v1}, then in V2 = Span{v1,v2}, then in V3 = Span{v1,v2,v3} etc.

It could happen that some vector vj is already in Vj−1, i.e. in the span of {v1,v2, . . .vj−1}

for some j. In this case, we do not have to add any new vector to the ONB at that stage. For

this reason, there could be a “jump” in the indices of the ONB. Suppose that j1 < j2 < j3 <

. . . < j` are those indices, where the sequence of Vj-subspaces truly increases, i.e.

{0} = V1 = V2 = . . . = Vj1−1 ⊂
⊂ Vj1 = Vj1+1 = . . . = Vj2−1 ⊂
⊂ Vj2 = Vj2+1 = . . . = Vj3−1 ⊂
⊂ . . .
⊂ Vj` = Vj`+1 = . . . = Vk

(with the convention that V0 = {0}, which is needed if j1 = 1). Of course in most cases

j1 = 1, j2 = 2, j3 = 3 etc. But if there is a “jump”, say j1 = 1, j2 = 2 but j3 = 4, then it

means that {v1,v2,v3} span the same space as {v1,v2}, i.e. v3 is not linearly independent

from the previous vectors. In this case V3 is also spanned by only two orthonormal vectors,

u1,u2.

The algorithm gives orthonormal vectors u1,u2, . . . such that

span{u1} = Vj1

span{u1,u2} = Vj2

etc.

span{u1,u2, . . .u`} = Vj`

The algorithm will give the j1, j2, . . . j` indices as well. Notice that the number of v vectors

may not be the same as the number of u vectors, in fact the latter, `, is the dimension of the

span of {v1, . . .vk}.
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In the description below the main text refers to the standard case jm = m (when the

{v1, . . .vk} set is linearly independent) and in parenthesis we remark the general case.

Step (1.) Normalize the first nonzero vector, i.e. define

u1 =
v1

‖v1‖

Clearly Span{u1} = Span{v1}.

[General case: Above we tacitly supposed that v1 6= 0, i.e. j1 = 1. If v1 = 0 then j1 will

be the index of the first nonzero vector in the sequence v1,v2, . . .vk, and u1 will be
vj1
‖vj1‖

,]

Step (2.) Compute the projection of v2 onto u1

w2 := v2 − (vt2 · u1)u1

If w2 6= 0, then define

u2 =
w2

‖w2‖

as our second orthogonal basis vector. Clearly V2 = Span{v1,v2} = Span{u1,u2}. If w2 = 0,

then notice that v2 is paralell with v1, i.e. no need for one more basis vector to generate the

span of {v1,v2}. In this case we do not add a new basis vector.

[General case: Again, the paragraph above referred to the typical case. But if u1 =
vj1
‖vj1‖

in the previous step, then

wj1+1 := vj1+1 − (vtj1+1 · u1)u1

i.e you always pick the next untouched vector from the sequence v1,v2, . . .vk. Moreover, it

could happen that wj1+1 = 0, in which case you have to go on to the next vector

wj1+2 := vj1+2 − (vtj1+2 · u1)u1
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and continue until you find the first a nonzero vector, say wj1+m. Then j2 = j1 + m and u2

will be wj1+m = wj2 normalized.]

Step (i.) Suppose that so far we have found orthonormal vectors u1,u2, . . .ui such that

Span{u1,u2, . . .ui} = Span{v1,v2, . . .vi} = Vi

Consider the vector

wi+1 = vi+1 − (vti+1 · u1)u1 − (vti+1 · u2)u2 − . . .− (vti+1 · ui)ui

i.e. the projection of vi+1 onto the subspace spanned by {u1, . . .ui} (at this stage you do not

have to “know” that it is a projection, since we have not defined it yet, but it is good to have

an idea what’s going on). If this vector is nonzero, wi+1 6= 0, then let

ui+1 =
wi+1

‖wi+1‖

If it is zero, then we do not create a new u vector and we go on to the next untouched v

vector.

[General case: The algorithm in the general case goes as follows. Suppose so far we have

found orthonormal vectors u1,u2, . . .ui such that

Span{u1,u2, . . .ui} = Span{v1,v2, . . .vji} = Vi

Consider the vectors

wm = vm − (vtm · u1)u1 − (vtm · u2)u2 − . . .− (vtm · ui)ui

for m = ji + 1, ji + 2, . . .. Let ji+1 be the index of the first nonzero among these vectors. This

means that vji+1 is the first vector not in the span of {u1,u2, . . .ui}. Then we define

ui+1 :=
vji+1

‖vji+1‖
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and this will be the new basis vector.]

For more details and examples, see

http://www.math.gatech.edu/~carlen/1502/html/pdf/gram.pdf

6.2 Orthogonal projections

Suppose that {u1,u2, . . .uk} is an orthonormal basis in V which is a subspace of Rn. Consider

the n× k matrix Q formed from these vectors as its columns and define

P = QQt

Clearly

Pw =
k∑
i=1

(uti ·w)ui

and notice that QtQ = Ik, the k × k identity matrix. The following is the key theorem

Theorem 6.1 The matrix P = QQt defined above is independent of the orthogonal basis

chosen, it depends only on the subspace V. It has the properties

P 2 = P, P t = P

and for any w ∈ Rn

‖w− Pw‖ < ‖w− v‖

for any v ∈ V other than Pw. In other words, Pw is the vector that is closest to w lying in

V.

Given a subspace V of Rn we can consider all vectors orthogonal to that, i.e. we define

the set

V⊥ := {w : wt · v = 0 for all v ∈ V}

It is easy to see the following properties
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Theorem 6.2 (i.) The set V⊥ is a linear subspace;

(ii.) V ∩ V⊥ = {0};

(iii.) V and V⊥ span Rn, moreover, every vector w ∈ Rn can be uniquely written as

w = v + v⊥ (6.1)

with v ∈ V, v⊥ ∈ V⊥.

(iv.) If P is the orthogonal projection onto V, and P⊥ is the orthogonal projection onto

V, then P + P⊥ = I (identity). The range and the kernel of P are given as

R(P ) = V and Ker(P ) = V⊥

Moreover v = Pw and v⊥ = P⊥w = (I − P )w = w − Pw in the decomposition (6.1).

(v.) We have the relation

(V⊥)⊥ = V.

(vi.) An orthonormal basis of V⊥ can be obtained from an orthonormal basis {u1, . . .uk}

of V by either applying the Gram-Schmidt procedure to the columns of I − P = I −QQt, or

to the spanning set

{u1,u2 . . .uk, e1, e2, . . .en}

and keeping only the last n− k elements of the resulting basis of Rn.

The subspaces V and V⊥ are called orthogonal complements of each other (see relation

(v.)). One of the most important example is expressed in Lemma 4.13, i.e. for any matrix A

N(A)⊥ = R(At) or N(At)⊥ = R(A) . (6.2)

Finally, recall that any subspace V can be described in two different ways: in parametric

form or with constraints. Either you give a basis {u1, . . . ,uk} in V (and orthonormal basis
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are usually even better), and use that any element of v can be uniquely written as

v =
k∑
j=1

ajuj

and the numbers (coordinates) aj are the parameters specifying v.

Or, you specify v belonging to V by the property that v ∈ V if and only if

P⊥v = 0

i.e.

vt · ui = 0 i = j + 1, j + 2, . . . n,

where {uj+1,uj+2, . . .un} is an ONB in V⊥. These are the constraint equations.

The parametric form is useful if you want to list all elements of the subspace (e.g. have

to present lots of elements of the subspace for some test). The constraint form is useful for

membership problems, if you have to decide whether a given element is in the subspace or

not.

Recall Problems 4.5 and 4.6 about the description of R(A). Problem 4.6 asked to give a

basis in R(A), i.e. it asked for a parametric representation (though at that time orthogonality

was not required). Problem 4.5 asked for constraints for R(A), i.e. relations among the

coordinates of a vector b to ensure that b ∈ R(A). This is the same, by (6.2), as finding

basis vectors in N(At) and requiring that b be orthogonal to all of them. In the solution to

Problem 4.5 we have found that −b2 − b3 + b4 = 0. In other words, the vector

u =


0
−1
−1
1


spans N(At) the nullspace of the transpose matrix (CHECK!). In this case N(At) is one

dimensional, but you could have ended up with more than one fully zero rows after the
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elimination with a general right hand side b. In this case you have as many constraints as

fully zero rows and this is also the dimension of N(At). Also these constraints, written as

uti · b = 0, give immediately an orthogonal basis in N(At) (which you can normalize if you

wish).

For more details and examples, see Eric Carlen’s notes:

http://www.math.gatech.edu/~carlen/1502/html/pdf/proj.pdf

and with Maple solutions to the problems:

http://www.math.gatech.edu/~carlen/1502/html/pdf/prj.pdf

6.3 QR decomposition

Once you understood the Gram-Schmidt procedure, then the QR decomposition is easy. The

key point is that the QR-decomposition runs a Gram-Schmidt algorithm for the column vectors

of a matrix A starting from the leftmost vector. It ignores those columns which are linearly

dependent of the previous ones (hence, in the pivoting language, it picks only the pivot

columns). The columns of the matrix Q is therefore the Gram-Schmidt output of the pivot

column vectors. These vectors can be expressed by the orthogonalized columns in an upper

triangular form:
a1 = r11q1

a2 = r12q1 + r22q2

a3 = r13q1 + r23q2 + r33q3
...

where a1, a2, . . . are the pivot columns of A. (Note: here ai, the columns of A are the vectors

to be orthonormalized, i.e. these play the role of the vectors vi in Section 6.1. The vectors qi

are the resulting orthonormal vectors, these play the role of the ui vectors in Section 6.1.)

If all columns are pivot columns, then one immediately has A = QR with

A =
[
a1 a2 . . . ak

]



LINEAR ALGEBRA: THEORY. Version: August 12, 2000 85

Q =
[
q1 q2 . . . qk

]
and

R =


r11 r12 r13 . . .
0 r22 r23 . . .

0 0 r33 . . .
...

...
...

...


If A has nonpivot columns, then R contains columns which express these nonpivot columns

in terms of those columns in Q which were obtained from preceding pivot columns of A. In

general, the decomposition looks like

A =

 ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 =

 ∗ ∗∗ ∗
∗ ∗

( ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗

)
= QR

(where ∗ denotes elements not necessarily zero). The first nonzero (pivot) elements are un-

derlined in each row. These determine the location of the linearly independent columns in A.

In this example the column space of A is two dimensional. The two columns of Q is an or-

thonormal basis in R(A). These two columns are obtained by applying Gram-Schmidt to the

first and third column of A. The coefficients in this Gram-Schmidt procedure are in the first

and third columns of R. Finally, the coefficients in the second, fourth and fifth column of R

express the remaining (not linearly independent) column vectors of A as linear combinations

of the columns of Q. One can easily express these coefficients (i.e. the matrix elements of R)

as

rij = qti · aj

These properties are summarized

Theorem 6.3 Let A be an n × k matrix and let r = rank(A). Then there exist a matrix Q

of dimensions n× r consisting of orthonormal columns and an upper triangular matrix R of

dimension r × k such that the following properties hold
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• A = QR

• R(A) = R(Q). In particular, the columns of Q form an orthonormal basis in R(A),

hence QtQ = I. The matrix P = QQt is the orthogonal projection from Rn onto R(A).

• Ker A = Ker R, in particular rank(R) = r.

Finally, it is always possible to ensure that the first nonzero elements in each row of R be

nonnegative. With this extra requirement, such a decomposition is unique.

6.4 Least squares

The method of least squares aims at finding a vector x for any given n × k matrix A and

n-vector b such that ‖Ax − b‖2 is the smallest possible. Why is this interesting? Of course

if b ∈ R(A), then just choose x to be (one of) the solution to Ax = b and this reaches the

smallest possible value (namely zero). What if b 6∈ R(A)? This especially often happens if

you have many equations and a few unknowns (n� k). For example this is typical problem

with curve fitting.

In this case you cannot solve Ax = b exactly, but you can aim for a solution x such that

Ax be as close as possible to b. This is given by the QR factorization as well:

Theorem 6.4 (Least squares for overdetermined systems) Let A = QR be the QR-factorization

of the matrix A. Then the equation

Rx = Qtb

has a solution for any b ∈ Rn. Every such solution minimizes the expression ‖Ax− b‖2, i.e.

‖Ax− b‖2 ≤ ‖Ay− b‖2

for any vector y ∈ Rk.
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For the proof, in nutshell, recall that QQt is the orthogonal projection onto R(A) in Rn.

Hence the point closest to b in R(A) is QQtb, i.e. we have to solve Ax = QQtb instead of

Ax = b. Since A = QR, we have QRx = QQtb. Multiplying it by Qt from the left and using

QtQ = I we get exactly Rx = Qtb.

Finally we show that Rx = v has a solution for any v ∈ Rr (in particular for v = Qtv).

But this is clear from rank(R) = r hence the column space of R is Rr.

There is a “least square” method for underdetermined systems as well, but it is less fre-

quently used. It selects the smallest possible solution to Ax = b, assuming that there is a

solution at all.

Theorem 6.5 (Minimal solution for the underdetermined case) For any b ∈ Rn, if Ax = b,

then A(Prx) = b as well, where Pr is the orthogonal projection onto the row space of A. In

other words, x∗ = Prx is also a solution and in fact

‖x∗‖2 < ‖x‖

for any other solution x of Ax = b.

For the proof, just recall that

Ax = APrx +A(I − Pr)x

but I − Pr is the projection onto the orthogonal complement of the row space of A, hence

A(I − Pr) = 0. This gives Ax = Ax∗ if x∗ = Prx. The minimality of ‖x∗‖ follows from the

basic property of the orthogonal projections.

Recall that for getting Pr, you have to find the QR-factorization of At: At = QR and

Pr = QQt.

The least square method has numerous applications, some of the are found on the web-page

mentioned above
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http://www.math.gatech.edu/~carlen/1502/html/pdf/least.pdf

Here is another application which goes back to Gauss, the inventor of the method. (This

part is taken from “Applied numerical linear algebra” by J. W. Demmel)

6.4.1 Application of the Least Squares in geodesy

How do you measure the distance on a real landscape? How do you measure the height of the

mountains? In other words, how to you figure out the coordinates of a given geographic point

with respect to the standard coordinate system of the Earth (latitude, longitude, height with

respect to the sea level)? The modern General Positioning System (GPS) uses satellites, but

let us go back to times where everything had to be done on the Earth...

The way to do it was to put reference points (so called landmarks) all over on the terrain at

well visible points (when you hike, you can still see them on the top of big mountains). The US

geodetic database consisted of about 700,000 landmarks (1974) more or less uniformly spaced

points at visible distances (a few miles) from each other. The goal is to find the coordinates

of these points very accurately. The number of unknowns is about 2,100,000. In fact Gauss

in nineteenth century has been asked to solve a similar problem in Germany (of course with

much less numbers). And he invented the method for this purpose...

The quantity which can be measured very accurately is the angle. At any landmark P

they measured the angle between the lines PQi and PQj for a few nearby (visible) landmarks

Qi, Qj . In this way one obtained a few numbers for each landmark, for definiteness, let’s

say, ten angles for each P . Hence altogether they obtained 7, 000, 000 numbers. Of course

these numbers are not independent of each other; from elementary geometry we know lots of

relations between them (most notably, the sum of the angles of a triangle...). In any case,

using the cosine theorem, one has 7, 000, 000 equations between the unknown coordinates and

the measured angles. These equations are actually not exactly linear, but one can linearize
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them in a consistent way. Hence the problem is to solve a huge linear system Ax = b of

7, 000, 000 equations with 2,100,000 unknowns. If everything were measured perfectly, there

would be an exact solution to this overdetermined system. But the measured data are not

exact, and since we have much more equations and unknowns, the errors most likely drive b

out of the column space of A. But one can search for the least square solution.

In 1978 such a system was solved for updating the US geodetic database with about

2,5 million equations and 400,000 unknowns, which was the biggest Least Square problem

ever solved at the time (some elementary geometric relations allowed to reduce the number

of equations and unknowns a bit). The actual computation heavily used further special

structure of the matrix A, namely that it is a very sparse matrix (most elements are zero).

This is because all relations expressed by the measured angles are actually relations between

neighboring landmarks. Each equation involves only a few out of the 400,000 variables. This

is very typical in many applications, and the numerical algorithms for sparse matrices is a

well developed separate branch of mathematics.


