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7 Eigenvalues, eigenvectors, diagonalization

7.1 Overview of diagonalizations

We have seen that a transformation matrix looks completely different in different bases (the

matrices (5.10) and (5.11) express the same transformation, but in different bases). It is

natural to search for the “best” basis for a given matrix, i.e. for a basis in which the matrix

is very simple. The “best” form of a matrix is the diagonal form, since it is extremely easy to

manipulate with diagonal matrices (even we could take its exponential in Example II in the

Introduction). Also look at the pictures of images of simple 2 × 2 matrices in Section 5.1 of

[D], especially digest the picture on p.128.

There is a difference between square matrices and rectangular ones. Rectangular matrices

act between different spaces, and one has the freedom to choose bases in these spaces indepen-

dently. It turns out that with this freedom any matrix can be brought into a diagonal form

by an orthogonal change of basis both in the domain space and in the image space In other

words, if one is allowed to change bases independently, then one gets the best possible form

one could hope for. (It is another question how to compute it). This is called the singular

value decomposition (SVD), which we discuss shortly in Section 7.4. Roughly speaking

it gives a factorization of A as A = UDV −1 = UDV t, where D is diagonal and V, U are

orthogonal on the appropriate subspaces.

The same construction works for square matrices as well. However, when discussing square

matrices, it is desirable to have one single basis instead of two, since we are eventually in the

same space. This means that we are looking for a matrix V such that A = V DV −1 where D

is diagonal (see Corollary 5.18). This is called the diagonalization of the matrix A. In other

words we are looking for a diagonal matrix that is similar to A (see Definition 5.19). This

reduces the freedom compared to SVD (you are allowed to play with only one V instead of U

and V ) and it turns out that not every square matrix can be written into a diagonal form.
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EXERCISE: Show that the matrix A =
(

1 1
0 1

)
cannot be written as V DV −1. (Hint: let

V =
(
a b

c d

)
and D =

(
s 0
0 t

)
with any unknown entries and try to determine them; you

will get contradiction).

There are two ways out, and both of them are used:

(I.) Insist on the diagonal form, and try to determine the most general class of matrices

which can be diagonalized. It turns out that every symmetric matrix A (i.e. matrix such that

A = At) with real entries is diagonalizable, moreover, it is diagonalizable by an orthogonal

matrix V (remember, we like orthogonal matrices!!). This is one of the most important

theorem in mathematics, and it usually runs under the name of spectral theorem (see

Theorem 7.10). Its importance is comparable to the Fundamental Theorem of calculus. One

could think that the restriction for symmetric matrices is very serious, but it is just a fact of

life that in many many applications one automatically has to deal with a symmetric matrix

from the nature of the problem.

Nevertheless, one can try to go beyond symmetric matrices, and it turns out that “most”

matrices are actually diagonalizable, although the conjugation matrix V will not be orthogo-

nal.

(II.) If a matrix is nondiagonalizable (like the one in the Exercise above), it is due to an

unfortunate coincidence (namely that it happen to have multiple eigenvalues and something

else also goes wrong). However, this phenomenon is very important; in the theory of differential

equations this is the source of resonances, which could destroy the regular behaviour of a

system (e.g. your old car sometimes starts terribly trembling at a certain speed, but only at

that speed. This is a resonance effect).

For such matrices another factorization is known: Jordan canonical form. We will not

discuss it here, but we remark, that it brings the matrix into an “almost” diagonal form.

Namely it presents matrices V and D such that A = V DV −1, but D is only almost diagonal,
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i.e. apart from the diagonal it is also allowed to have nonzero elements at the entries just one

step above the diagonal.

7.2 Full diagonalization of square matrices

We aim at A = V DV −1 with some diagonal matrix D with numbers λ1, λ2, . . . λn in its

diagonal (traditionally they are denoted by λ). Hence AV = V D, i.e.[
Av1

∣∣∣ Av2

∣∣∣ . . . ∣∣∣ Avn

]
=

[
λ1v1

∣∣∣ λ2v2

∣∣∣ . . . ∣∣∣ λnvn
]

(7.1)

are the column vectors of the both sides of the equation AV = V D, hence Avj = λjvj for the

columns of V (the vertical lines just separate the columns). This gives rise to the

Definition 7.1 A nonzero vector v is an eigenvector of an n×n matrix A with eigenvalue

λ if

Av = λv

WARNING: The condition that v is not zero is crucial. The reason is that we want to

characterize the eigenvalues, but if the zero vector were allowed then every number λ could

be an eigenvalue. However λ = 0 is allowed.

REMARK: Eigenvalues and eigenvectors come together in pairs. Every eigenvector has a

unique eigenvalue, just compute Av and see how it is related to v. However, the eigenvector

belonging to an eigenvalue is not unique. Clearly every nonzero multiple of an eigenvector is

also an eigenvector (belonging to the same eigenvalue), so it would be better to talk about

“eigendirections” or “eigenlines”, but traditionally we use eigenvectors with the understanding

that there is always a freedom of a constant multiple. [In parenthesis: you have seen such

thing, the indefinite integral was defined only up to an additive constant].
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IMPORTANT REMARK: The true importance of the concept of eigenvalue is that it

is independent of the basis; it is determined by the underlying linear transformation only.

Recall that the same linear transformation is expressed by very differently looking matrices

with respect to different bases. Of course all these matrices are similar (Definition 5.19). The

key point is

Theorem 7.2 Let A,B be similar matrices, i.e. there is an invertible matrix V with B =

V AV −1. Then the set of eigenvalues (with multiplicity) of A and B coincide.

REMARK: The converse of this theorem is not always true. However, if A is diagonalizable,

then B is so (CHECK(*)), and in this case the set of eigenvalues coincide.

Proof of Theorem 7.2: The simplest proof uses a fact about determinants, namely that

det(AB) = det(A)det(B) (7.2)

which we mention without proof. Now we can easily show that the characteristic polynomials

of A and B concide (hence so do the eigenvalues)

det(B − λI) = det
[
V (A− λI)V −1

]
= det(V )det(A− λI)det(V −1)

= det(A− λI)det(V )det(V −1) = det(A− λI)det(V V −1)

= det(A− λI)

Notice that we used (7.2) twice.

An alternative proof for the case of simple eigenvalues easily follows from Theorem 7.5.

(DO IT(*)) This proof avoids (7.2). 2

We can reformulate the diagonalization problem into the language of eigenvalues. The

proof of the following Lemma is hopefully clear from (7.1) (THINK IT OVER(*)!)
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Lemma 7.3 An n×n matrix is diagonalizable, i.e. it can be written as A = V DV −1 for some

invertible matrix V and diagonal matrix D if and only if there exists a basis {v1,v2, . . .vn}

consisting of eigenvectors (this is also called eigenbasis). In this case the matrix V is formed

from these vectors as columns and the diagonal matrix has the eigenvalues in its diagonal.

A can be diagonalized by an orthogonal conjugating matrix V if and only if the eigenbasis

can be chosen orthonormal.

REMARK: The decomposition is not unique, there are several sources of ambiguity. For

example every eigenvector can be multiplied by any number (but notice that this ambiguity

is really irrelevant: if you multiply some eigenvector by 3, it multiplies a column of V by 3,

but then on the other side it divides a row of V −1 by 3. CHECK(*)!!). Moreover, the order in

which you labelled the eigenvectors is certainly not fixed. Finally, if two linearly independent

vectors have the same eigenvalue, then any linear combination of them is also an eigenvector

(CHECK (*)!!), hence you have a big freedom. However, the set of eigenvalues with their

multiplicity is uniquely determined. This was proven in Theorem 7.2.

7.2.1 Finding eigenvalues, eigenvectors

Rewrite the eigenvalue equation as (A− λI)v = 0. Since v is nonzero, it means that A− λI

is a singular matrix (recall, a square matrix is singular if not invertible, see Theorem 4.16),

hence

det(A− λI) = 0

(see (vi) of Theorem 4.16). If we compute this determinant, we get a polynomial of degree

exactly n, which is called the characteristic polynomial of A:

p(λ) = det(A− λI)

and clearly the eigenvalues are its roots.
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Recall the

Theorem 7.4 (Fundamental theorem of algebra) Every polynomial p(λ) of degree n has

exactly n roots, including multiplicity and complex roots.

REMARK: A root λ0 has multiplicity k if p(λ) is divisible by the factor (λ − λ0)
k but is

not divisible by (λ− λ0)
k+1. In other words, you can write p(λ) = (λ− λ0)

kq(λ), where q(λ)

is another polynomial – of degree (n− k) –, where q(λ0) 6= 0.

We also remark, that including complex roots is necessary even if the coefficients of the

polynomial are real. Think of p(λ) = λ2 + 1.

Applying this theorem to our case, it is clear that an n×n matrix has exactly n eigenvalues,

counting multiplicity and complex eigenvalues. Hence finding eigenvalues is equivalent to find

the roots of the characteristic polynomial. Recall that there is no general “root-formula”

for polynomials of degree bigger than four, and even the formulas for the cubic and quartic

equations are horrendous and not used (however, the quadratic formula is useful, and you

should know it!). But Newton’s method can find at least the real roots of any polynomial

very fast (for the complex root you have to be a bit smarter, but there are methods for that

as well).

Once the eigenvalues are found, we search for eigenvectors. This has to be done separately

for each eigenvalue and it consist of finding vectors in the nullspace of A − λI. For real

eigenvalues, the corresponding eigenvector is real as well. For complex eigenvalues you will

have complex eigenvectors. They are in Cn not in Rn, which means that you have to use

complex numbers everywhere. But they are just as good numbers as the real ones, everything

we discussed for Rn immediately goes through to Cn.

For multiple eigenvalues you have to find as many linearly independent eigenvectors as the

multiplicity of that eigenvalue. This step may not work in general, and this is the obstruction

to general diagonalizability.
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Example: The matrix A =
(

1 1
0 1

)
has characteristic polynomial p(λ) = (λ− 1)2, hence

the eigenvalue λ = 1 has multiplicity 2. But apart from v1 =
(

1
0

)
there is no other eigenvector

(lin. indep. of this one). This is why A is not diagonalizable (see Exercise in Section 7.1).

However, if the eigenvalues are simple, then this procedure always works and it leads to

the following theorem:

Theorem 7.5 (Diagonalization for simple eigenvalues) Let A be an n × n matrix and

suppose that all eigenvalues λ1, λ2, . . . λn are distinct (simple roots of p(λ)). Choose an eigen-

vector vi to the eigenvalue λi for each i. Then these eigenvectors form a basis. Hence the

matrix is diagonalizable with the conjugating matrix V = [v1,v2, . . .]:

A = V DV −1.

with D being the diagonal matrix

D =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λn


Proof: By Theorem 7.3 the only thing that remains to prove is that the eigenvectors are

linearly independent (then they will form a basis by counting the dimension). Suppose, on

contrary that some nontrivial linear combination of them is zero:

c1v1 + c2v2 + . . .+ cnvn = 0 (7.3)

and we will use a proof by contradiction. Choose that nontrivial linear combination which has

the fewest nonzero coefficients (This is a good trick, watch out! You don’t want to choose the
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trivial case, when all of them are zero, but you still insist on choosing the closest possible).

Suppose that c1 6= 0. Let A act on this equation:

A
(
c1v1 + c2v2 + . . .+ cnvn

)
= c1λ1v1 + c2λ2v2 + . . .+ cnλnvn = 0

recalling that Avj = λjvj . Subtract λ1 times the equation (7.3) from this second equation,

you get

c2(λ2 − λ1)v2 + . . .+ cn(λn − λ1)vn = 0 (7.4)

(notice that the first terms cancel). This is again a linear combination of the vectors. Could

all coefficients be zero? Since the eigenvalues are distinct, this depends only on the c’s. But if

all c2, c3, . . . were zero, then (7.3) would be c1v1 = 0 hence c1 were zero as well, i.e. (7.3) would

have been a trivial linear combination which we excluded. Hence this new linear combination

(7.4) is nontrivial as well. But it clearly has less nonzero coefficient than (7.3) had, since

c1 is not present any more. However, this contradicts to our choice of the original linear

combination (7.3)! This contradiction shows that the original assumption, namely that the

eigenvectors are linearly dependent was wrong. This proves what we wanted. (Try to digest

this proof, it sounds quite sophisticated and perhaps messy, but if you put some effort in

understanding it, it will make sense.) 2

Problem 7.6 Diagonalize the matrix A =
(

2 5
−1 −4

)

SOLUTION: We have to find eigenvalues and eigenvectors. The steps are as follows:

Step 1: Find the characteristic polynomial:

p(λ) = det

(
2− λ 5
−1 −4− λ

)
= (2− λ)(−4− λ)− 5(−1) = λ2 + 2λ− 3

Step 2.: Find the roots of p(λ).
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λ1 =
−2 +

√
22 − 4(−3)

2
= 1 λ2 =

−2−
√

22 − 4(−3)

2
= −3

Step 3.: Find the eigenvectors. Must be done separately for each eigenvalue.

Eigenvector for λ1 = 1:

This eigenvector v1 =
(
x
y

)
solves Av1 = λ1v1, or (A− λ1I)v1 = 0. Hence

(
1 5
−1 −5

)(
x
y

)
=
(

0
0

)
i.e.

x + 5y = 0
−x − 5y = 0

Of course these two equations are not independent, you can throw away one of them, and

give any nontrivial solution to x + 5y = 0. For example x = −5, y = 1 would do, hence

v1 =
(
−5
1

)
.

Eigenvector for λ2 = −3:

Similarly, we need v2 =
(
x
y

)
solving (A−λ2I)v2 = 0 (these x, y are not the same ones as

above), i.e. (
5 5
−1 −1

)(
x
y

)
=
(

0
0

)
i.e.

5x + 5y = 0
−x − y = 0

so for example x = 1, y = −1 would do. Hence v2 =
(

1
−1

)
is a possible eigenvector for

λ2 = −3.

Step 4.: Finally, we write up the diagonal form A = V DV −1. Clearly

V =
(
−5 1
1 −1

)
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D =
(

1 0
0 −3

)
and we have to compute the inverse of V , which is

V −1 =
(
−1/4 −1/4
−1/4 −5/4

)

Hence

A =
(

2 5
−1 −4

)
=
(
−5 1
1 −1

)(
1 0
0 −3

)(
−1/4 −1/4
−1/4 −5/4

)
is the diagonal decomposition of A.

Here is an example with complex eigenvalues-vectors:

Problem 7.7 Diagonalize the matrix A =
(

0 −1
1 0

)

SOLUTION: This is the matrix of rotation with +π
2

in R2. It is clear that a rotation does

not take any vector into its constant multiple. So seemingly there is no eigenvector. It is true

that there are no real eigenvectors (which can be seen in R2), but there are complex ones.

These eigenvectors cannot be represented in R2, but the algebraic question, find (possibly

complex) eigenvectors-eigenvalues satisfying the eigenvalue equation Av = λv still makes

sense. Recall that “vectors” are much more general objects than “visible” planar or spatial

arrows. For example an n-tuple of complex numbers (z1, z2, . . . zn) can also be considered as a

“vector”, and this is the element of the vectorspace Cn with the “usual” operations (i.e. add

and scalar-multiply vectors entrywise).

The characteristic polynomial of M is

p(λ) = det

(
−λ −1
1 −λ

)
= λ2 + 1

hence the eigenvalues are λ1 = i, λ2 = −i.
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The eigenvector v1 =
(
x
y

)
corresponding to λ1 = i solves

(
−i −1
1 −i

)(
x
y

)
=
(

0
0

)
i.e.

−ix − y = 0
x − iy = 0

These two equations are actually multiples of each other, namely the second is i-times the

first (if you recall that i2 = −1). Don’t forget that the complex numbers are also “numbers”

one can do calculations with them.

Hence you can forget about one of these equations (since they are the same), and just

solve one of them. A nontrivial solution is x = 1, y = −i, hence

v1 =
(

1
−i

)

(CHECK that
(

0 −1
1 0

)(
1
−i

)
=
(
i
1

)
which is really i-times v1 !!).

By a similar calculation you get that the eigenvector v2 for λ2 = −i is

v2 =
(

1
i

)
Now let

U =
(

1 1
−i i

)
compute its inverse

U−1 =
1

2

(
1 i

1 −i

)
and write up the diagonal matrix

D =
(
i 0
0 −i

)
from the eigenvalues. Hence

A =
(

0 −1
1 0

)
=
(

1 1
−i i

)(
i 0
0 −i

)( 1
2

i
2

1
2
− i

2

)
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is the diagonalization of A.

Finally we look at an example where diagonalization is possible despite a multiple eigen-

value. Multiple eigenvalue does not a priori exclude diagonalization. If you can find enough

linearly independent eigenvectors (i.e. as many as the multiplicity) to the given eigenvector,

then you can still diagonalize. More precisely, if some λ is and eigenvalue of multiplifity k,

then you need N(A− λI) be k-dimensional. Notice that the fact that λ is an eigenvalue only

guarantees that N(A − λI) is not trivial. But it may contain only one eigenvector (more

precisely only one eigendirection), which is not enough for higher multiplicity. This is exactly

what happened for the nondiagonalizable matrix
(

1 1
0 1

)
, the eigenvalue λ1 = λ2 = 1 was

double, but the nullspace of A− 1 · I =
(

0 1
0 0

)
is only 1 dimensional (one free variable).

Problem 7.8 Diagonalize the matrix

A =

 2 −2 −1
0 1 0
2 −4 −1


SOLUTION: Run the usual machinery:

p(λ) = det

 2− λ −2 −1
0 1− λ 0
2 −4 −1− λ

 = −λ(1− λ)2

Hence λ1 = 0, λ2 = λ3 = 1, i.e., the eigenvalue 1 has multiplicity 2.

First find the eigenvector v1 to λ1 = 0. Since λ1 is a simple root, this is easy, as before

you solve  2 −2 −1
0 1 0
2 −4 −1

v1 =

 2 −2 −1
0 1 0
2 −4 −1


xy
z

 =

 0
0
0



and easily find (one) solution v1 =

 1
0
2

. (Notice that the matrix here is A; it really should

be A− λI, but now λ = 0).
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Next, you try to find two linearly independent eigenvectors to λ = 1. I.e. you solve 1 −2 −1
0 0 0
2 −4 −2


xy
z

 =

 0
0
0


After Gauss 

1 −2 −1
∣∣∣ 0

0 0 0
∣∣∣ 0

2 −4 −2
∣∣∣ 0

 =⇒


1 −2 −1

∣∣∣ 0

0 0 0
∣∣∣ 0

0 0 0
∣∣∣ 0


i.e. you have TWO free variables! Hence you will have two linearly independent solutions.

How to find them? Exactly as you found a basis in the nullspace of a matrix: set a free

variable 1, the rest zero, and repeat for all free variables. E.g. here y, z are free, set first

y = 1, z = 0, get x = 2, i.e. v2 =

 2
1
0

; then set y = 0, z = 1, get x = 1, i.e. v3 =

 1
0
1

.

Finally you will have to invert the matrix

V =

 1 2 1
0 1 0
2 0 1


the result is

V −1 =

−1 2 1
0 1 0
2 −4 −1


and the diagonalization of A

A =

 1 2 1
0 1 0
2 0 1


 0 0 0

0 1 0
0 0 1


−1 2 1

0 1 0
2 −4 −1



Problem 7.9 Let again A =
(

2 5
−1 −4

)
and let w =

(
3
1

)
. Compute A2000w.
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SOLUTION: Of course you could just run a machine to multiply this matrix 2000 times.

But if the matrix is huge not just 2× 2, then it could take long time. Here is a better way.

For that we have to recall the diagonalization above A = V DV −1. Notice the remarkable

telescopic cancellation property:

A2000 =
(
V DV −1

)(
V DV −1

)(
V DV −1

)
. . .
(
V DV −1

)
= V D2000V −1

since all the V −1V dropped out from the middle. Now computing D2000 is trivial:

D2000 =
(

12000 0
0 (−3)2000

)
=
(

1 0
0 32000

)

since diagonal matrices can be multiplied and raised to power “entrywise” (unlike general

matrices). Hence

A2000w = V D2000V −1w =
(
−5 1
1 −1

)(
1 0
0 32000

)(
−1/4 −1/4
−1/4 −5/4

)(
3
1

)
=
(

5− 2 · 32000

−1 + 2 · 32000

)

7.2.2 Spectral theorem: diagonalization of real symmetric matrices

Finally, we discuss the case of symmetric matrices, A = At. First notice that if V is orthogonal,

then the conjugated matrix V AV t is also symmetric (CHECK (*)). This means that the

property whether a matrix is symmetric or not is actually independent of the orthonormal

basis, hence this is really a property of the underlying linear map. It is always good to rely

on properties which are independent of the chosen basis.

The following theorem is VERY IMPORTANT:

Theorem 7.10 [Spectral Theorem for real symmetric matrices] Let A be an n×n symmetric

matrix with real entries. Then it has n real eigenvalues (with possible multiplicity) and one
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can choose an orthonormal eigenbasis {v1,v2, . . .vn}. Using this basis to form the matrix

V =
[
v1 v2 . . .vn

]
, the matrix A is diagonalizable as

A = V DV t (7.5)

where the diagonal matrix D contains the eigenvalues in the diagonal:

D =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λn

 (7.6)

We will prove this theorem after mentioning some VERY IMPORTANT consequences.

REMARK: Sometimes the following form of this theorem is useful. For any vector u

Au =
n∑
i=1

λi(v
t
i · u)vi =

( n∑
i=1

λiviv
t
i

)
u (7.7)

or

A =
n∑
i=1

λiviv
t
i

Recall that the matrix viv
t
i is the orthogonal projection onto the vector vi (See Section 6).

In words: the action of a real symmetric matrix is that it projects the given vector into the

eigendirections, scales the projected vectors by the corresponding eigenvalues, then adds up

these scaled vectors.

MAKE SURE YOU TRULY UNDERSTAND IT. This is one of the most important tool

whenever linear algebra is applied.

In particular it enables us to define functions of matrices. We can take integer powers of

matrices (also negative powers, if A−1 exists). But what is eA, or does sin(A) make sense?

Recall that eA was important (Section 1.2 Example II). The following is the right definition

(sometimes this is called the spectral theorem).
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Definition 7.11 Let A be a real symmetric n × n matrix and f : R → R a function. Then

f(A) is also an n× n matrix defined by its action on any vector u as

f(A)u = Au =
n∑
i=1

f(λi)(v
t
i · u)vi

In other words

f(A) =
n∑
i=1

f(λi)viv
t
i

or, again in other words

f(A) = V f(D)V t

if A = V DV t is the diagonalization of A (see (7.5)), where f(D) for a diagonal matrix D is

defined as

f(D) =


f(λ1) 0 0 . . . 0

0 f(λ2) 0 . . . 0
0 0 f(λ3) . . . 0
...

...
...

...
0 0 0 . . . f(λn)


In short, you can take any function of a real symmetric matrix by taking the function of

the eigenvalues and use these numbers f(λi) as scaling factors on the eigenspaces. Moreover,

the new matrix f(A) is again symmetric (CHECK(*)), it has the same eigenvectors as A and

eigenvalues f(λ1), f(λ2), . . . f(λn), where λi are the eigenvalues of A.

One of the most important case is when f(A) = A−1 (inverse matrix). In particular, the

eigenvalues of the inverse matrix are the inverses of the eigenvalues of A (for regular A).

You can also check the consistency of this definition for powers of A. We know how to

compute

A2 = AA =
( n∑
i=1

λiviv
t
i

)( n∑
i=1

λiviv
t
i

)
(7.8)
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by simple matrix multiplication. Now Definition 7.11 gives another expression for A2 = f(A)

with the function f(x) = x2:

A2 =
n∑
i=1

λ2
iviv

t
i (7.9)

It would be quite confusing if (7.8) and (7.9) were not be the same. CHECK (*) that they

are.

More generally you can check that the usual arithmetic operations with functions extend

to matrices. For example f(A)g(A) = (fg)(A). For this you have to check (DO IT(*)) that

( n∑
i=1

f(λi)viv
t
i

)( n∑
i=1

g(λi)viv
t
i

)
=

n∑
i=1

f(λi)g(λi)viv
t
i

In fact Definition 7.11 also works for any diagonalizable matrix; if A = V DV −1, then one

can define f(A) = V f(D)V −1 (notice that here V is not necessarily orthogonal, hence we

have to use V −1 instead of V t). The trouble is that it is not so easy to decide about a matrix

A whether it is diagonalizable without actually trying to diagonalize it. But the symmetry of

a matrix is very easy to recognize.

Proof of Theorem 7.10. We know that the matrix has n eigenvalues. First we show that

the eigenvalues are real. Suppose Av = λv. Take the scalar product of this equation with v

(Recall: the overbar denotes complex conjugation for a complex number. The conjugation of

a vector is just the entrywise conjugation of the elements). On the right hand side you get

λvt · v = λ
(
|v1|

2 + |v2|
2 + . . .

)
= λ‖v‖2

On the left hand side we have vt · Av = (Atv)t · v (recall basic matrix multiplication). But

At = A, hence we get

(Av)t · v = λ‖v‖2
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Now take the conjugate of the eigenvalue equation Av = λv. Since A has real entries, you

don’t have to worry about conjugating them, and you get

Av = λ v.

Plug this into the previous equation, you get

λ‖v‖2 = λ‖v‖2

i.e. λ = λ, which exactly means that λ is real.

The proof that one can choose an orthonormal eigenbasis consisting of real vectors would

go beyond the scope of this note for the general case, but in a remark after the proof we give

the idea. In any case, we emphasize that the theorem is true without any assumption on

the multiplicity. In particular the trouble with the Example A =
(

1 1
0 1

)
in Section 7.2.1 is

excluded simply by the symmetry of the matrix A.

So we restrict our attention to the simpler case, when we assume, in addition, that the

eigenvalues are simple, as in Theorem 7.5. Then clearly the eigenvectors are real, since they

are in the nullspace of A− λI, which is a real matrix.

So in this case all we have to show that the eigenvectors are pairwise orthogonal. Then

one can easily normalize them to get an orthonormal set. So let

Av = λv

Av′ = λ′v′

be two eigenvalues-eigenvectors, and we assume that λ 6= λ′ (eigenvalues are distinct). Com-

pute the scalar product vt · Av′ in two different ways. On one hand

vt · Av′ = λ′(vt · v′)



LINEAR ALGEBRA: THEORY. Version: August 12, 2000 108

On the other hand

vt · Av′ = (Atv)t · v′ = (Av)t · v′ = λ(vt · v′)

Since λ 6= λ′, we obtain that vt · v′ = 0, which we wanted to show. This completes the proof

of the spectral theorem in the case of simple eigenvalues. 2

REMARK: The idea behind the proof for the general case is similar. In nutshell: let v an

eigenvector corresponding to the eigenvalue λ. Consider the subspace S in Rn of all vectors

that are orthogonal to v (sometimes we denote it by S = v⊥). (CHECK (*) that subspace!)

Of course the eigendirection given by v is invariant under the multiplication by A, i.e. Av is

in the same direction as v (just the definition of the eigenvector). The good news is that if A

is symmetric, then the orthogonal complement S is also invariant under A. In other words,

if u ∈ S, i.e. ut · v = 0, then Au ∈ S as well (CHECK (*) that (Au)t · v = 0). Choose

an orthonormal basis {u1, . . .un−1} in S, and write up the linear map given by the matrix

of A in the basis {v,u1, . . .un−1} (in other words, conjugate A by the matrix U containing

these basis vectors in the columns). Check that this is an orthonormal basis of Rn, i.e. U is

orthogonal. Check that map in this basis looks like
λ 0 0 . . . 0
0 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
...

...
...

...
0 ∗ ∗ . . . ∗


where ∗ could be anything. (i.e. check that U tAU has this form). Consider the (n−1)×(n−1)

matrix Ã in the lower right corner. Show that it is symmetric as well. Now you can run the

same machinery as before for the matrix Ã, and get successively the diagonal form of A.

Problem 7.12 Find the spectral decomposition of the matrix A =
(

3 −1
−1 3

)
.
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SOLUTION: The solution goes exactly in the same way as in Problem 7.6. The eigenvalues

are λ1 = 2, λ2 = 4, eigenvectors v1 =
(

1
1

)
, v2 =

(
−1
1

)
. These are orthogonal, but not yet

normalized. So we replace them by

v1 =
1
√

2

(
1
1

)
and v2 =

1
√

2

(
−1
1

)

Hence

V =

( 1√
2
− 1√

2
1√
2

1√
2

)
Notice that V is orthogonal, hence its inverse is just the transpose

V −1 = V t =

( 1√
2

1√
2

− 1√
2

1√
2

)

The diagonal matrix is of course

D =
(

2 0
0 4

)
and the decomposition is

A =
(

3 −1
−1 3

)
=

( 1√
2
− 1√

2
1√
2

1√
2

)(
2 0
0 4

)( 1√
2

1√
2

− 1√
2

1√
2

)

Problem 7.13 Find the spectral decomposition of the matrix

A =

 2 2 1
2 −1 −2
1 −2 2



SOLUTION: The characteristic polynomial is

p(λ) = det(λ− A) = λ3 − 3λ2 − 9λ+ 27

It easily factorizes:

λ3 − 3λ2 − 9λ+ 27 = λ2(λ− 3)− 9(λ− 3) = (λ+ 3)(λ− 3)2
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The eigenvalue λ1 = −3 is single, the eigenvector v1 solves Av1 = −3v1, and one easily

gets

v1 =

−1
2
1


The other eigenvalue is double: λ2 = λ3 = 3. Hence we need to find an orthonormal basis

in the solution space Av = 3v. Since A is symmetric, we know that this space is exactly two

dimensional (as many as we need - recall that without symmetry it could be false). So we

need a basis in the nullspace of the matrix A− 3I, then we can orthonormalize it. After row

elimination on A− 3I we get

A− 3I =

−1 2 1
2 −4 −2
1 −2 −1

 =⇒

−1 2 1
0 0 0
0 0 0


and

N(A− 3I) =

{ 1
0
1

 ,
 2

1
0

}

The vectors

v2 =

 1
0
1

 , v3 =

 2
1
0


are clearly linearly independent, hence the matrix of eigenvectors is

V =

−1 1 2
2 0 1
1 1 0


and A = V DV −1 with

D =

−3 0 0
0 3 0
0 0 3


This is the diagonalization of A, but the eigenvectors are not orthonormal. Recall that A

is symmetric, and eigenvectors belonging to different eigenvalues are orthogonal. Notice that
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v1 is really orthogonal to v2,v3. Although v1 is not normalized, it is easy to normalize it and

use

q1 =
v1

‖v1‖
=

1
√

6

−1
2
1


instead of v1 as eigenvector for λ1.

But v2,v3 are not orthogonal yet. This is because we essentially chose an arbitrary (or

most convenient) basis in N(A− 3I). So we have to run Gram-Schmidt for v2,v3:

q2 :=
v2

‖v2‖
=

1
√

2

 1
0
1


and

w3 = v3 − (v3 · q2)q2 =

 1
1
−1


hence

q3 =
w3

‖w3‖
=

1
√

3

 1
1
−1


Now q1,q2,q3 is an orthonormal eigenbasis, and we can form the matrix

Q =

−1/
√

6 1/
√

2 1/
√

3
2/
√

6 0 1/
√

3
1/
√

6 1/
√

2 −1/
√

3


One can check that A = QDQt (notice that the D matrix is the same, the eigenvalues did

not change, only the eigenvectors), and this is the spectral decomposition of A.

Notice that the eigensubspaces belonging to different eigenvalues are orthogonal (i.e. the

one dimensional subspace spanned by v1 is orthogonal to the two dimensional subspace

spanned by {v2,v3}), but the basis within each individual eigensubspace might not be or-

thogonal. When we learned how to find a basis in the nullspace of a matrix (Problem 4.7),

we did not care about orthogonality. Hence first you have to find a basis in each nullspace
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N(A − λjI) (which is the same as the eigenspace belonging to the eigenvalue λj), then you

have to orthonormalize this basis within each eigenspace by the Gram-Schmidt procedure.

7.3 Application of diagonalization to solve linear systems of differ-
ential equations

Recall Example II. from Section 1.2. The goal is to solve a linear system of ordinary differential

equations written as

x′(t) = Ax(t) (7.10)

where A is a given n × n matrix and x(t) is an unknown vector-valued function, depending

on a single variable t.

In the scalar case, x′(t) = ax(t), where a ∈ R and x(t) is just a scalar valued function, the

solution is given as x(t) = eatx(0), where x(0) is usually given (initial condition). Following

this analogy, it is tempting to present the solution to (7.10) as

x(t) = eAtx(0)

and this is indeed correct if eAt is defined properly.

Suppose that A can be diagonalized, i.e. A = V DV −1 (this is automatically true for

symmetric A, but it is also true for many other matrices). Then we define

eAt := V eDtV −1

where eDt is a diagonal matrix with eλjt in the diagonal (here, as usual, λj’s are the eigenvalues,

i.e. the diagonal entries of D). This definition is of course the same as given in the Spectral

Theorem for symmetric matrices.

DELICATE REMARK: In fact, we could have defined f(A) for arbitrary diagonalizable

matrix as f(A) = V f(D)V −1 and not just for symmetric ones. The only trouble is that in the
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general case the eigenvalues may be complex, so when forming the diagonal matrix f(D) with

f(λ1), f(λ2), . . . in the diagonal, we should make sure that f is defined for complex numbers.

Not every function given originally on the real line can be extended to the complex plane, but

polynomials, rational functions, exponential functions etc. are OK. (The truth is that every

function is OK which has convergent power series, these are called analytic functions.)

Now we can check that

x(t) := eAtx(0) = V eDtV −1x(0)

indeed solves (7.10). Simply compute

d

dt
x(t) =

d

dt
V eDtV −1x(0) = lim

s→t

V eDsV −1x(0)− V eDtV −1x(0)

s− t

= V
[
lim
s→t

eDs − eDt

s− t

]
V −1x(0) = V DeDtV −1x(0)

Here we used that eDs − eDt is a diagonal matrix with eλjs − eλjt in the diagonal, and clearly

lim
s→t

eλjs − eλjt

s− t
= λje

λjt

(recall the derivative of the t 7→ eλt function as a limit of the difference quotient). Hence

[
lim
s→t

eDs − eDt

s− t

]
is a diagonal matrix with λje

λjt in the diagonal, which is exactly DeDt.

Now we can use again the spectral theorem (for symmetric matrices), or the definition

f(A) = V f(D)V −1 mentioned in the Delicate Remark above, for the function f(x) = xext to

see that

V DeDtV −1x(0) = AeAtx(0) = Ax(t) ,

which completes the proof that x(t) = eAtx(0) satisfies the equation (7.10).
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Hence if you want to solve (7.10), first diagonalize the matrix A, i.e. find the A = V DV −1

decomposition, then compute eAt as V eDtV −1, and this matrix acting on the initial condition

vector x(0) will give the solution.

This method always works for symmetric matrices and it works for most general square

matrices. If A is not diagonalizable, then one has to use the Jordan canonical decomposition

instead, which was mentioned at the end of Section 7.1.

7.4 Singular value decomposition (SVD)

What is the “nice” form of a general n × k matrix A? Since this matrix acts between two

different spaces, you can choose a “good” basis in both. We know that good “basis” means

orthonormal. The following theorem tells that this can always be achieved:

Theorem 7.14 (Singular value decomposition (SVD)) Let A be an n × k matrix with

n ≥ k. Then there exist a matrix U of dimensions n × k and a matrix V dimensions k × k

such that U tU = I, V tV = I and

A = UDV t

where D is a diagonal k × k matrix with nonnegative decreasing diagonal entries σ1 ≥

σ2 ≥ . . . σk ≥ 0. These numbers are called the singular values of A, while the columns

{u1,u2, . . .uk} of U are called the left singular vectors and the columns of {v1,v2, . . .vk}

V are the right singular vectors. The right singular vectors are in Rn, the left ones are in

Rk. The decomposition in this form is unique.

Here is another form of this theorem, which is more similar to the form (7.7) of the spectral

theorem:

A =
k∑
i=1

σiuiv
t
i
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or, as its action on a vector w:

Aw =
k∑
i=1

σi(v
t
i ·w)ui

In plain words: For any matrix A one can choose orthonormal bases {u} and {v} and

there are numbers σi such that the action of A on a given vector w is the following: it finds

the component of w in the direction of the i-th right singular vector, multiplies this number

by the singular value σi and takes this number as the i-th coordinate of the image vector Aw

in the {u} basis.

It is clear that SVD is a generalization of the Spectral Theorem 7.10.

We are not going to prove that SVD exists. But assuming it does, it is easy to find it from

the Spectral theorem.

The key observation is to take the matrices AAt and AtA. It is clear that both of them

are symmetric matrices (CHECK (*)). Moreover, using A = UDV t we see that

AAt = UDV tV DU t = UD2U t

and

AtA = V DU tUDV t = V D2V t

Hence the singular values of A can be obtained as the (positive) square roots of the eigenvalues

of AtA (or, which is the same, the eigenvalues of AAt). The right singular vectors (columns

of V ) are the eigenvectors of AtA, the left singular vectors are the eigenvectors of AAt. Hence

finding SVD reduces to diagonalizing the symmetric matrices AAt and AtA, which problem

we have solved in Problem 7.12.

A minor care is needed, since the eigenvectors of a matrix are not unique. Even for simple

eigenvalues, the corresponding normalized eigenvectors have a two-fold ambiguity: their sign.

It is clear from the desired representation A =
∑k
i=1 σiuiv

t
i that one cannot flip say u2 → −u2
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(you can flip u2 → −u2 and v2 → −v2 simultaneously, then the above sum is unchanged). So

one can choose one set of eigenvectors, say the right ones, {vi}, arbitrarily, but then the signs

of the left vectors {ui} are determined, and the proper choice may not be the one which you

get just by arbitrarily choosing the eigenvectors of AtA.

The way out is very simple, in fact it simplifies the whole algorithm. Suppose that we

fixed the {vi} vectors as arbitrary normalized eigenvectors of AtA. Then, assuming the

decomposition A =
∑k
i=1 σiuiv

t
i, we compute

Avj =
k∑
i=1

σiui(v
t
i · vj)

By orthonormality of the {vi} vectors, only the i = j term is nonzero in the sum, and we get

Avj = σjuj

i.e.

uj =
1

σj
Avj

or U = AVD−1 (if σj ’s are nonzero). This will be the right choice for the left singular vectors,

given the right ones. If σj = 0, then the corresponding vectors can be chosen arbitrarily, they

do not contribute to the SVD anyway.

If you happen to know the left vectors {ui} and you want to find the right ones, then

compute

utjA =
k∑
i=1

σi(u
t
j · ui)v

t
i = σjv

t
j

i.e.

vj =
1

σj
Atuj (7.11)

This latter formula is clearly the same as V = AtUD−1 which is clear from A = UDV t.
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Problem 7.15 Find the singular value decomposition of

A =

 4/3 1/3
−4/3 2/3
2/3 2/3


SOLUTION: By

AAt = UDV tV DU t = UD2U t

we can find the the singular values of A which are the ( positive ) square roots of the eigenvalues

of AAt and the left singular vectors which are the normalized eigenvectors of AAt with respect

to the positive eigenvalues.

Now we compute AAt and get

AAt =


4
3

1
3

−4
3

2
3

2
3

2
3




4
3

1
3

−4
3

2
3

2
3

2
3


t

=


17
9
−14

9
10
9

−14
9

20
9
−4

9
10
9

−4
9

8
9


The positive eigenvalues of AAt are λ1 = 4, λ2 = 1 and the normalized eigenvectors are

u1 =

 −
2
3

2
3

−1
3

 and u2 =

 −
1
3

−2
3

−2
3

 . Hence

U =

 −
2
3
−1

3
2
3
−2

3

−1
3
−2

3


and

D =

(
2 0
0 1

)
.

To find the right singular vectors, one can either run the same machinery for AtA and then

choose carefully the sign of the eigenvectors, or one can use the formula (7.11). This formula

immediately gives

v1 =
1

2

(
4/3 −4/3 2/3
1/3 2/3 2/3

)−2/3
2/3
−1/3

 =
(
−1
0

)
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v2 =
1

1

(
4/3 −4/3 2/3
1/3 2/3 2/3

)−1/3
−2/3
−2/3

 =
(

0
−1

)

Alternatively, you could have find the eigenvectors of AtA directly since AtA = V DU tUDV t =

V D2V t. So we compute AtA and get

AtA =


4
3

1
3

−4
3

2
3

2
3

2
3


t

4
3

1
3

−4
3

2
3

2
3

2
3

 =

(
4 0
0 1

)
.

The positive eigenvalues of AtA are λ3 = 4, λ4 = 1 (check that we can also get the same D

from the positive square roots of the eigenvalues of AtA), and the normalized eigenvectors are

v1 =

(
−1
0

)
and v2 =

(
0
−1

)
. Hence

V =

(
−1 0
0 −1

)
.

Here we made a specific choice of the v1,v2 vectors, which turn out to be the right one, since

UDV t =

 −
2
3
−1

3
2
3
−2

3

−1
3
−2

3

( 2 0
0 1

)(
−1 0
0 −1

)t
=

 −
2
3
−1

3
2
3
−2

3

−1
3
−2

3

( 2 0
0 1

)(
−1 0
0 −1

)

=

 4/3 1/3
−4/3 2/3
2/3 2/3


which is A.

But if you had chosen v1 =
(

1
0

)
, v2 =

(
0
1

)
, then you would have gotten −A instead of

A. So using the formula (7.11) is always safer.

7.4.1 Application of SVD in image compression

[This section follows the presentation of the book Applied Numerical Linear Algebra by James

Demmel, (SIAM, 1997), page 114-116.]



LINEAR ALGEBRA: THEORY. Version: August 12, 2000 119

A picture on the computer screen can be encoded by a matrix A. If the screen has n× k

pixels (say n = 320 rows and k = 200 columns), and the brightness of the pixel is expressed

by a number from 0 to 1, then one can easily define the matrix A of a picture just by putting

the brightness of the (i, j)-th pixel into the (i, j)-th entry of A (colors are also possible).

A big matrix A contains lots of information, it is expensive to store it and manipulate with

it. How to reduce the size but still keep the relevant majority of the information? You could

take every second pixel into account, for example. But this is not very good. The picture has

“boring” parts (e.g. uniform background) where every tenth pixel would be enough to keep

and still you could decode the picture quite easily just by approximation on the nearby pixels.

On the other hand, on the “interesting” part of the picture (sharp contours etc.) you would

like to keep all pixels. So we have to “teach” the computer to distinguish between “boring”

and “interesting”.

There are very well developed methods for this, and we discuss a very “baby”-version of

the main idea.

Take the SVD of A in the following form

A =
k∑
i=1

σiuiv
t
i

(suppose n ≥ k). To store the full U and V matrices are at least as expensive as storing the

original A (A has nk entries, U and V together have nk + k2 entries, plus you have to record

the singular values, i.e. the SVD requires (n+ k+1)k numbers to store.) But the idea is that

the small singular values and their singular vectors probably do not matter too much. These

belong to the “boring” part of the picture (more precisely, these express the small deviations

of the true picture from the “boring” homogeneous approximation).

Fix a number m ≤ k and define the following matrix:

Am =
m∑
i=1

σiuiv
t
i
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i.e. you truncate the SVD by retaining the m biggest singular values and throwing away the

rest (with their singular vectors). You can store Am in m(n+ k + 1) slots. If m� k, then it

is much less memory space than storing A.

But how good is it? Of course Am is not A, but it is close to it. In fact in some sense

it is the closest possible matrix with that little memory requirement. The following theorem

makes it more precise:

Theorem 7.16 The matrix Am is the best rank-m approximation to A in the sense that it

minimizes the distance from A to the subspace of all matrices of rank at most m.

Of course, we have not defined what it means that a matrix is “close” to another matrix.

There are several ways to define it, and later on, when we discuss numerical methods we will

be more precise. For the purpose of this theorem we just use the following definition:

Definition 7.17 The distance between two matrices A = (aij) and B = (bij) of the same size

is given by the number √√√√√ n∑
i=1

k∑
j=1

(aij − bij)2

Back to the image compression, it turns out that if you store a usual picture of size 320×200

by a generally rank k = 200 matrix, and if you take a rank m = 20 approximation of it, i.e.

you use only Am=20 instead of A, then the picture is already fairly good, figures, faces etc.

can be recognized. And the storage was 10 times smaller!

There is one more advantage of storing a picture in the SVD form. When you download

a picture from the internet, it could take quite a long time. In many cases after having seen

even a part of the picture, you can already decide that this is not what you wanted and click

on the next page. Standard programs download the picture line by line, i.e. you see all the
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details of the top of the picture (in many cases only the sky) before you see anything from

the essential part. More sophisticated programs download a picture by some coarse-graining

procedure, i.e. you immediately see the whole picture, but only a very coarsened version, and

later, as the downloading goes on, the details are refined. The sequence of matrices A1, A2, . . .

does exactly this. In fact, if you have already transmitted say A20, then transmitting A21 is

easy; you just transmit the vectors u21 and v21 and the number σ21, and the receiver “adds”

the matrix σ21u21v
t
21 to the existing picture.


