Math 2601 C2

Homework 3

Since we will not have covered any new material until Wednesday I will only assign three problems. These involve techniques from [Notes:TH] sections 3 and 4. Please do all three and email me if you need any assistance (mullikin@math.gatech.edu). They are to be turned in Friday Jan 26, 2001 at $2: 05 \mathrm{pm}$. Homework is to be stapled (if more than one page) and solutions are to be neatly written. If I can't read your work, I can't give you any credit.

Problem 1 Solve the following system of equations, if possible. Are there any solutions? If so, how many (one or infinitely many)?

$$
\begin{aligned}
2 x+3 y-2 z & =1 \\
-2 y+4 z & =0 \\
x+2 y-4 z & =3
\end{aligned}
$$

Problem 2 Find $\operatorname{Ker}(A)$ where,

$$
A=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-1 & 5 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

Problem 3 Find a scalar λ and a vector \vec{x} so that $B \vec{x}=\lambda \vec{x}$ where,

$$
B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

Problem that will keep you up at night : You do not need to work this proiblem if you don't want to. But it is interesting. Why is it that there does not exist any nonzero vector $\vec{x}=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$ and a scalar $\lambda \in \mathbb{R}$ so that

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}} ?
$$

