
Math 2601 C2
Homework 3

Since we will not have covered any new material until Wednesday I will only
assign three problems. These involve techniques from [Notes:TH] sections 3
and 4. Please do all three and email me if you need any assistance (mul-
likin@math.gatech.edu). They are to be turned in Friday Jan 26, 2001 at
2:05pm. Homework is to be stapled (if more than one page) and solu-
tions are to be neatly written. If I can’t read your work, I can’t give you
any credit.

Problem 1 Solve the following system of equations, if possible. Are there
any solutions? If so, how many (one or infinitely many)?

2x + 3y − 2z = 1
−2y + 4z = 0

x + 2y − 4z = 3

Solution : To solve this problem we only need to use row reduction tech-
niques on the matrix associated with the given equations. So,




2 3 −2 1
0 −2 4 0
1 2 −4 3


 (R3 = R3 + (− 1

2 )R1)




2 3 −2 1
0 −2 4 0
0 1

2 −3 5
2




(− 1
2R2)




2 3 −2 1
0 1 −2 0
0 1

2 −3 5
2


 (R3 = R3 + (− 1

2R2)




2 3 −2 1
0 1 −2 0
0 0 −2 5

2




(− 1
2R3)




2 3 −2 1
0 1 −2 0
0 0 1 − 5

4


 (R2 = R2 + (2)R3)




2 3 −2 1
0 1 0 − 5

2
0 0 1 − 5

4




(R1 = R1 + (−3)R2)




2 0 −2 17
2

0 1 0 − 5
2

0 0 1 − 5
4


 (R1 = R1 + (2)R3)




2 0 0 6
0 1 0 − 5

2
1 0 1 − 5

4







1 0 0 3
0 1 0 − 5

2
0 0 1 − 5

4




x = 3
y = − 5

2
z = − 5

4

So we can see that there is only one solution.
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Problem 2 Find Ker(A) where,

A =




1 3 2
−1 5 2
2 2 2




Solution : To find Ker(A) we are to find the set {~x | A~x = 0}. Thus we
only need to perform row reduction techniques again.




1 3 2 0
−1 5 2 0
2 2 2 0


 (R2 = R2 + R1)




1 3 2 0
0 8 4 0
2 2 2 0




(R3 = R3 + (−2)R1)




1 3 2 0
0 8 4 0
0 −4 −2 0


 (R3 = R3 + 1

2R1)




1 3 2 0
0 8 4 0
0 0 0 0




( 1
8R2)




1 3 2 0
0 1 1

2 0
0 0 0 0


 (R1 = R1 + (−3)R1)




1 0 1
2 0

0 1 1
2 0

0 0 0 0




Thus we see that any vector of the form < − 1
2 t,− 1

2 t, t > is in Ker(A). I.e.
Ker(A) = span{< − 1

2 ,− 1
2 , 1 >}.

2



Problem 3 Find a scalar λ and a vector ~x so that B~x = λ~x where,

B =
[
1 2
2 1

]

Solution : Here we have a really interesting dilemma. Without knowing
anything about eigenvalues or eigenvectors how can we find solutions to this
problem? Well, just try to solve the given system B~x = λ~x. How are we going
to do this? Go ahead say it. That’s right row reduction. We are looking to solve
the system,

x1 + 2x2 = λx1

2x1 + x2 = λx2

Which presents us with the matrix,
[
(1− λ) 2 0

2 (1− λ) 0

]

Bring on the row reduction.

[
(1− λ) 2 0

2 (1− λ) 0

]
(R2 = R2 +− 2

1−λ )
(So, λ 6= 1)

[
(1− λ) 2 0

0 (1−λ)2−4
1−λ 0

]

Let’s pause for a moment and reflect on recent events. Notice the last line in
the matrix has a nasty looking term. For this system to have a unique solution
requires that (1−λ)2−4

1−λ 6= 0, otherwise the last row is all zero and we would

have infinitely many solutions. I think you can see that if (1−λ)2−4
1−λ 6= 0 then

after performing some more row reduction we can reduce the matrix so that the
solutions are x1 = 0 and x2 = 0. According to the question I asked, this is a
valid solution. That is B~0 = λ~0 for any ’ol λ you would like to choose. This case
is somewhat unsatisfying. We would like to obtain some nonzero solution. How
can we guarantee a nonzero solution? Well if the last row were all zero then we
would have infinitely many solutions right? So, lets try that. For the last row
to be all zero we only need to find out when (1−λ)2−4

1−λ = 0. Well, (1−λ)2−4
1−λ = 0

when (1− λ)2 − 4 = 0. So, after multiplying everything out we see we want to
solve the quadratic equation λ2−2λ−3 = 0. Thus we see that λ = 3 or λ = −1
will satisfy this equation (just use the quadratic formula). Sticking the value
λ = 3 into the system of equations,

x1 + 2x2 = λx1

2x1 + x2 = λx2

we see that we obtain the solution x1 = x2. Sure enough,
[
1 2
2 1

] [
x1

x1

]
=

[
3x1

3x1

]
= 3

[
x1

x1

]
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Likewise, if we use λ = −1 in the system of equations we can find that we obtain
x1 = −x2. Notice, as if by magic, we have

[
1 2
2 1

] [
x1

−x1

]
=

[−x1

x1

]
= −1

[
x1

−x1

]

What in the world is going on here. Let’s examine the situation a little more
closely. We wanted to find a vector ~x and a scalar λ so that B~x = λ~x. Or,
equivalently, we wanted to find a solution to (B − λI)~x = ~0 right? So, we want
to find Ker(B−λI). So, you may recall from Calc II, that the kernel of a matrix
is nontrivial (i.e. something other than the zero vector) if the determinant is
zero. So, if we want to have nontrivial elements in Ker(B − λI) then it suffices
to find a λ so that det(B − λI) = 0. In our case, what is det(B − λI)? It is the
following,

det(B − λI) = det(
[
1 2
2 1

]
+ λ

[
1 0
0 1

]
) = det

[
(1− λ) 2

2 (1− λ)

]

= (1− λ)2 − 4

Does this look familiar at all? You bet it does, it’s the same quadratic we had
to solve earlier. Then, once you have found a value λ which makes Ker(B−λI)
have nontrivial kernel, you can then find the ’eigenvector’ (whatever that is)
which is the basis for Ker(B − λI) for that particular λ!
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Problem that will keep you up at night : You do not need to work this
problem if you don’t want to. But it is interesting. Why is it that there does

not exist any nonzero vector ~x =
(

x1

x2

)
∈ R2 and a scalar λ ∈ R so that

[
1 −1
1 1

](
x1

x2

)
= λ

(
x1

x2

)
?

Solution : Whuh! What’s this all about? Well, what does it mean to say there
exist ~x and λ so that A~x = λ~x? It means that A~x is parallel to ~x. Or that A only
stretches or shrinks vectors in the direction of ~x. So, why doesn’t the matrix[
1 −1
1 1

]
have any such vectors? Well, as you may recall (or may not, that’s OK

we’ll see it again) the above matrix is actually the matrix 2√
2

[
cos π

4 − sin π
4

sin π
4 cos π

4

]

, which is the matrix of a rotation. So, since we are rotating every vector by π
4

radians, there is no vector which gets stretched in its original direction. Thus,

there are no (nonzero) vectors which satisfy
[
1 −1
1 1

]
~x = λ~x.
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