Math 2601 C2
 Homework 4

Please do all three and email me if you need any assistance (mullikin@math.gatech.edu). They are to be turned in Friday Feb 2, 2001 at 2:05pm. HOME WORK IS TO BE STAPLED AND SOLUTIONS ARE TO BE NEATLY WRIT$\boldsymbol{T E N}$. If I can't read your work, I can't give you any credit.

Problem 1 Let \mathcal{V} be the space of all 2×2 real valued matrices. I.e.,

$$
\mathcal{V}=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

i) Find a basis for \mathcal{V}.
ii) Can you construct a linear transformation $T: \mathcal{V} \rightarrow \mathbb{R}^{4}$ where $\operatorname{Im}(T)=\mathbb{R}^{4}$ and $\operatorname{Ker}(T)=\overrightarrow{0}$ (Note, in this case $\overrightarrow{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$)? Such a map is called a bijection, and we say \mathcal{V} and \mathbb{R}^{4} are in one-to-one correspondence.

Problem 2 Let $\mathfrak{B}_{1}=\left\{1, x, x^{2}\right\}$ be a basis for \mathcal{P}_{2} and let $\mathfrak{B}_{2}=\left\{1, x, x^{2}, x^{3}\right\}$ be a basis for \mathcal{P}_{3}. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ be the map defined by $T(p(x))=x p(x)$.
i) Show that T is a linear transformation by using the definition.
ii) Find the matrix ${ }_{\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{T}$.
iii) Find $\operatorname{Ker}\left({\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{T}\right)$ and $\operatorname{Im}\left(\left\{_{\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{T}\right)\right.$.

Problem 3 Let $\mathfrak{B}_{1}=\left\{1, x, x^{2}\right\}$ be a basis for \mathcal{P}_{2}, and let $\mathfrak{B}_{2}=\left\{1, x, x^{2}, x^{3}\right\}$ be a basis for \mathcal{P}_{3}. Let $\bigcirc: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ be the map defined by,

$$
\bigcirc(p(x))=\int_{0}^{x} p(t) d t
$$

i) Find ${ }_{\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{\varrho}$
ii) Use ${ }_{\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{\ominus}$ to compute $\odot\left(3 x^{2}+2 x+1\right)$. Note, all in all you will need to compute

$$
\Phi_{\left\{\mathfrak{B}_{2}\right\}}\left(\left[\left\{\mathfrak{B}_{2}\right\}<1 M_{\left\{\mathfrak{B}_{1}\right\}}^{\wp}\right] \Psi_{\left\{\mathfrak{B}_{1}\right\}}(p(x))\right)
$$

iii) Find $\operatorname{Ker}\left(\mathfrak{B}_{2}\right\}$ $\left.M_{\left\{\mathfrak{B}_{1}\right\}}^{\wp}\right)$ and $\operatorname{Im}\left(\left\{\mathfrak{B}_{2}\right\} \quad M_{\left\{\mathfrak{B}_{1}\right\}}^{\wp}\right)$.

