Math 2601 C2
 Homework 5 New And Improved!

Please do all three of the following problems and email me if you need any assistance (mullikin@math.gatech.edu). The problems are to be turned in Monday Feb 12, 2001 at $2: 05 \mathrm{pm}$. Please, if your work is more than one page, find some mechanical means of maintaining some type of connectedness between the pages. Also, please write neatly. If I can't read your work, I can't give you any credit.

Problem 1 Before working this problem, please see the supplement on the web about finding inverse matrices. Consider the following 4×4 matrix.

$$
A=\left[\begin{array}{llll}
4 & -2 & 2 & 1 \\
0 & -1 & 0 & 2 \\
4 & -3 & 2 & 1 \\
8 & -5 & 3 & 0
\end{array}\right]
$$

i) Either perform row operations on A or compute $\operatorname{det} A$ to verify that A is invertible.
ii) Compute A^{-1}, and compute $A A^{-1}$ to verify your solution is correct.

Problem 2 Let $\mathfrak{B}_{1}=\left\{1, x, x^{2}\right\}$ be the usual basis in \mathcal{P}_{2}.
i) Check that the set $\mathfrak{B}_{2}=\left\{x^{2}-2 x, x^{2}+1, x-1\right\}$ is also a basis of \mathcal{P}_{2}.
ii) Compute the change of basis matrix from \mathfrak{B}_{1} to \mathfrak{B}_{2} and from \mathfrak{B}_{2} to \mathfrak{B}_{1}. Check that these two matrices are inverses of each other.

Problem 3 Let

$$
\mathfrak{B}_{1}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\left\{\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)\right\}
$$

and

$$
\mathfrak{B}_{2}=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}=\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\} .
$$

i) Verify that the sets are bases in \mathbb{R}^{3}.
ii) Write the vector $\vec{u}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$ in the \mathfrak{B}_{1} basis.
iii) Find the change of basis matrix from \mathfrak{B}_{1} to \mathfrak{B}_{2}.
iv) Find the change of basis matrix from \mathfrak{B}_{2} to \mathfrak{B}_{1}.
v) Let $\vec{a}=2 \vec{v}_{1}-2 \vec{v}_{2}+3 \vec{v}_{3}$. Write this vector in the \mathfrak{B}_{2} basis (i.e. find $\Psi_{\mathfrak{B}_{2}}(\vec{a})$). Check the result by writing \vec{a} in the standard basis and check that both representations really give the same vector.

