Math 2601 C2
Homework 6

Please do all three of the following problems and email me if you need any as-
sistance (mullikin@math.gatech.edu). The problems are to be turned in Friday
Feb 23, 2001 at 2:05pm. Please, staple your work if it is more than one page.
Also, please write neatly. If I can’t read your work, I can’t give you any credit.
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Problem 1 Let A=1(2 2 1
3 2 3

i) Find the QR factorization of A.
ii Find the orthogonal projection P onto the column space of A.

iii) Find the orthogonal projection P onto the complement of the column
space of A.

Solution :

i) We begin by implementing the Gram-Schmidt process on the columns
61, C_iQ, and 53 of A.

Next we need to find the second vector, so we have the following,
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Sigh, all that work and it turns out the last column is dependent on the first two.
After I discovered this I went back and checked and sure enough det(A) = 0.
So, one of the columns is non pivotal. Finally we have found,
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That’s half the battle! (groan...) Fortunately, finding the entries of R only
involves computing some dot products. We know that R must be upper trian-
gular so we only need to find the entries r;; where ¢ < j. Recall the formula



rij = q;-d@j, where ¢; denotes the i'" column of @ and a; denotes the j** column
of A.
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Thus, we have found
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Finally we have,
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ii) Recall that the desired projection is P = QQ7, so we only need to com-
pute a transpose and a matrix product. Indeed,
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iii) Next, remember that P + P+ = 1. So, P* =1 — P. le.,
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Problem 2 Let B =
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i) Find the QR factorization of B.

ii) Find the least square solution to BZ = b with
1

> 2

b= 3

1

iii) Find the least square solution to BZ = ¢ with

Solution :

i) As before, we need to run Gram-Schmidt on the columns of B to find the
columns of Q. So, let §; denote the i*" column of @ and let b; denote the j**
column of B.
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So,
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Next we need to find the matrix R. Recall from the first problem that R is
an upper triangular matrix where the nonzero elements are r;; = @ - 5j so that
A = QR. So the dimension will work out we deduce that R must be a 3 x 3
matrix. So, lets find the nonzero entries.
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ii)
What we have here is an overdetermined system. That is, there are more
equations than there are variables (since B is a 4 X 3 matrix). So, Theorem 6.4

in [Notes:TH] says we need to solve the system RZ = QTE.
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We can write this as a matrix and row reduce. Indeed,
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iii) We need to do the same thing, but this time we need to solve the system
RZ = Q"¢
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We can write this as a matrix and row reduce. Indeed,

1 0 1 | o0
0 v2 v2 | 0
0 0 1 | 0
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You should reduce and verify that the solution is = | 0
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. Find the minimal length solution to

Problem 3 Let C = (1 11

o= (%),

Solution :
What we have here is an underdetermined system. So, we will use Theorem 6.5
in [Notes:Th| to solve this problem. The theorem tells us that if # is a solution
to CZ = b then C(P.%) = b is a solution as well, where P, is the projection
onto the row space of C. Also, P.# := Z* is a minimal solution.

So, first let us find a solution to the system CZ = (g) Guess how we do
that. That’s right, row reduction!

2 -1 1 0 | 3
1 1 1.1 1] 0
1o 2 L1 )
= 3
(0 13 3 [ —1
Thus, we have infinitely many solutions with two parameters. That is,
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Next we need to find P,.. Recall that for getting P., you have to find the Q R-
factorization of CT. Then P, = QQT. Fortunately C” only has two columns,
so this shouldn’t take too long.

2

L1

Q1——6 1

0

r 2 2

AN
.| ] [ | -2
2=1117 111 e 0
1 1 'S v

Il
— = =
I
| —|
[N}
Sl
—_



So,

Thus,

So,

Pr:QQT:

[SN1F

Wi

W 3

2= 7T 5 0= =
@2l V30

1

(=)

W=

[SN1F

Wi

2 3
V6 34/30
1 12 2 _ 1 1
V6 330 V6 V6 V6
1 6 3 12 6
V6 3v/30 3v/30  3v30 330
3
0 V30
71 2 1
10 5 5 10
- 7 1 2
5 10 10 5
2 1 3 1
5 10 10 5
1 2 1 3
10 5 5 10
7o 1 2 1
10 5 5 10
2 1
17 1 2 1=355 35!
5 10 10 5 1l 2
l—35—3
2 1 3 1 s
5 10 10 5 t
1 2 1 3
10 5 5 10

10



7] 2; 1 1 1; 2 2; 1

10 3 Jt 5 1 3 Jt 5 IOt
1 2 1 7 1 2 1 2
51 35 3t 10 38 3t 108 5t
2 2 1 1 1 2 3 1

1 2 1 2 1 2 1 3
(S+3)+ (2 +i+ s+ (-5 +2+5)t
(-2 —5)+ (Es— s+ 5s) + (£t — 2t + 2¢)
(2- L)+ (—As— s+ 2s)+(—&t— 2t + 1)
(5 —2)+(—Fs— &5+ 1s) + (—35t — xt + 1)
9 14 2 12 7 4 3
E‘F(—@‘F%—F%)S-F(—@‘F@-F%)t

2 14

—16+ (36 — 30 + 3005 + (55 — 5 + 3!

T 10
Freaky... After all that multiplication, all the paramenters went away. How
"bout that.
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