Math 2601 C2

Homework 6

Please do all three of the following problems and email me if you need any assistance (mullikin@math.gatech.edu). The problems are to be turned in Friday Feb 23, 2001 at 2:05pm. Please, staple your work if it is more than one page. Also, please write neatly. If I can't read your work, I can't give you any credit.

Problem 1 Let $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 2 & 2 & 1 \\ 3 & 2 & 3\end{array}\right)$.
i) Find the $Q R$ factorization of A.
ii Find the orthogonal projection P onto the column space of A.
iii) Find the orthogonal projection P^{\perp} onto the complement of the column space of A.

Solution :

i) We begin by implementing the Gram-Schmidt process on the columns \vec{a}_{1}, \vec{a}_{2}, and \vec{a}_{3} of A.

$$
\vec{q}_{1}=\frac{\vec{a}_{1}}{\left\|\vec{a}_{2}\right\|}=\frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Next we need to find the second vector, so we have the following,

$$
\begin{gathered}
\vec{w}_{2}=\vec{a}_{2}-\left(\vec{a}_{2} \cdot \vec{q}_{1}\right) \vec{q}_{1} \\
=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)-\left(0+\frac{4}{\sqrt{14}}+\frac{6}{\sqrt{14}}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{3}{\sqrt{14}}
\end{array}\right) \\
=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)-\left(\begin{array}{c}
\frac{10}{14} \\
\frac{20}{14} \\
\frac{30}{14}
\end{array}\right)
\end{gathered}
$$

$$
=\left(\begin{array}{c}
-\frac{5}{7} \\
\frac{4}{7} \\
-\frac{1}{7}
\end{array}\right)
$$

Then,

$$
\vec{q}_{2}=\frac{\vec{w}_{2}}{\left\|\vec{w}_{2}\right\|}=\frac{7}{\sqrt{42}}\left(\begin{array}{c}
-\frac{5}{7} \\
\frac{4}{7} \\
-\frac{1}{7}
\end{array}\right)
$$

Lastly,

$$
\left.\begin{array}{c}
\vec{w}_{3}=\vec{a}_{3}-\left(\vec{a}_{3} \cdot \vec{q}_{2}\right) \vec{q}_{2}-\left(\vec{a}_{3} \cdot \vec{q}_{1}\right) \vec{q}_{1} \\
1 \\
3
\end{array}\right)-\left(-\frac{10}{\sqrt{42}}+\frac{4}{\sqrt{42}}-\frac{3}{\sqrt{42}}\right)\left(\begin{array}{c}
-\frac{5}{\sqrt{42}} \\
\frac{4}{\sqrt{42}} \\
-\frac{1}{\sqrt{42}}
\end{array}\right)-\left(\frac{2}{\sqrt{14}}+\frac{2}{\sqrt{14}}+\frac{9}{\sqrt{14}}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{3}{\sqrt{14}}
\end{array}\right) .\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)-\frac{9}{\sqrt{42}}\left(\begin{array}{c}
-\frac{5}{\sqrt{42}} \\
\frac{4}{\sqrt{42}} \\
-\frac{1}{\sqrt{42}}
\end{array}\right)-\frac{13}{\sqrt{14}}\left(\begin{array}{c}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{3}{\sqrt{14}}
\end{array}\right) .\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Sigh, all that work and it turns out the last column is dependent on the first two. After I discovered this I went back and checked and sure enough $\operatorname{det}(A)=0$. So, one of the columns is non pivotal. Finally we have found,

$$
Q=\left(\begin{array}{cc}
\frac{1}{\sqrt{14}} & -\frac{5}{\sqrt{42}} \\
\frac{2}{\sqrt{14}} & \frac{4}{\sqrt{42}} \\
\frac{3}{\sqrt{14}} & -\frac{1}{\sqrt{42}}
\end{array}\right)
$$

That's half the battle! (groan...) Fortunately, finding the entries of R only involves computing some dot products. We know that R must be upper triangular so we only need to find the entries $r_{i j}$ where $i \leq j$. Recall the formula
$r_{i j}=\vec{q}_{i} \cdot \vec{a}_{j}$, where \vec{q}_{i} denotes the $i^{\text {th }}$ column of Q and a_{j} denotes the $j^{\text {th }}$ column of A.

$$
\begin{aligned}
& r_{11}=\vec{q}_{1} \cdot \vec{a}_{1}=\left(\begin{array}{l}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{3}{\sqrt{14}}
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\frac{14}{\sqrt{14}} \\
& r_{12}=\vec{q}_{1} \cdot \vec{a}_{2}=\left(\begin{array}{l}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{3}{\sqrt{14}}
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)=\frac{10}{\sqrt{14}} \\
& r_{13}=\vec{q}_{1} \cdot \vec{a}_{3}=\left(\begin{array}{l}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{3}{\sqrt{14}}
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)=\frac{13}{\sqrt{14}} \\
& r_{22}=\vec{q}_{2} \cdot \vec{a}_{2}=\left(\begin{array}{l}
-\frac{5}{\sqrt{42}} \\
\frac{4}{\sqrt{42}} \\
-\frac{1}{\sqrt{42}}
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)=\frac{6}{\sqrt{42}} \\
& r_{23}=\vec{q}_{2} \cdot \vec{a}_{3}=\left(\begin{array}{l}
-\frac{5}{\sqrt{42}} \\
\frac{4}{\sqrt{42}} \\
-\frac{1}{\sqrt{42}}
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)=-\frac{9}{\sqrt{42}}
\end{aligned}
$$

Thus, we have found

$$
R=\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{14}{\sqrt{14}} & \frac{10}{\sqrt{14}} & \frac{13}{\sqrt{14}} \\
0 & \frac{6}{\sqrt{42}} & -\frac{9}{\sqrt{42}}
\end{array}\right)
$$

Finally we have,

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 0 & 2 \\
2 & 2 & 1 \\
3 & 2 & 3
\end{array}\right)=Q R \\
=\left(\begin{array}{cc}
\frac{1}{\sqrt{14}} & -\frac{5}{\sqrt{42}} \\
\frac{2}{\sqrt{14}} & \frac{4}{\sqrt{42}} \\
\frac{3}{\sqrt{14}} & -\frac{1}{\sqrt{42}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{14}{\sqrt{14}} & \frac{10}{\sqrt{14}} & \frac{13}{\sqrt{14}} \\
0 & \frac{6}{\sqrt{42}} & -\frac{9}{\sqrt{42}}
\end{array}\right)
\end{gathered}
$$

ii) Recall that the desired projection is $P=Q Q^{T}$, so we only need to compute a transpose and a matrix product. Indeed,

$$
P=Q Q^{T}=\left(\begin{array}{cc}
\frac{1}{\sqrt{14}} & -\frac{5}{\sqrt{42}} \\
\frac{2}{\sqrt{14}} & \frac{4}{\sqrt{42}} \\
\frac{3}{\sqrt{14}} & -\frac{1}{\sqrt{42}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} & \frac{3}{\sqrt{14}} \\
-\frac{5}{\sqrt{42}} & \frac{4}{\sqrt{42}} & -\frac{1}{\sqrt{42}}
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

iii) Next, remember that $P+P^{\perp}=I$. So, $P^{\perp}=I-P$. I.e.,

$$
P^{\perp}=\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

Problem 2 Let $B=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
i) Find the $Q R$ factorization of B.
ii) Find the least square solution to $B \vec{x}=\vec{b}$ with

$$
\vec{b}:=\left(\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right)
$$

iii) Find the least square solution to $B \vec{x}=\vec{c}$ with

$$
\vec{c}:=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)
$$

Solution :

i) As before, we need to run Gram-Schmidt on the columns of B to find the columns of Q. So, let \vec{q}_{i} denote the $i^{t h}$ column of Q and let \vec{b}_{j} denote the $j^{\text {th }}$ column of B.

$$
\begin{gathered}
\vec{q}_{1}=\frac{\vec{b}_{1}}{\left\|\vec{b}_{1}\right\|}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
\vec{w}_{2}=\vec{b}_{2}-\left[\vec{b}_{2} \cdot \vec{q}_{1}\right] \vec{q}_{1}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)-\left[\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\right]\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)-[0]\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
\end{gathered}
$$

So,

$$
\vec{q}_{2}=\frac{\vec{w}_{2}}{\left\|\vec{w}_{2}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

Finally,

$$
\begin{gathered}
\vec{w}_{3}=\vec{b}_{3}-\left[\vec{b}_{3} \cdot \vec{q}_{2}\right] \vec{q}_{2}-\left[\vec{b}_{3} \cdot \vec{q}_{1}\right] \vec{q}_{1} \\
=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)-\left[\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\right]\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)-\left[\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\right]\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)-\left[\frac{2}{\sqrt{2}}\right]\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)-[1]\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
=\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

Then,

$$
\vec{q}_{3}=\frac{\vec{w}_{3}}{\left\|\vec{w}_{3}\right\|}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

So, we have found

$$
Q=\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & 0 \\
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Next we need to find the matrix R. Recall from the first problem that R is an upper triangular matrix where the nonzero elements are $r_{i j}=\vec{q}_{i} \cdot \vec{b}_{j}$ so that $A=Q R$. So the dimension will work out we deduce that R must be a 3×3 matrix. So, lets find the nonzero entries.

$$
\begin{aligned}
& r_{11}=\vec{q}_{1} \cdot \vec{b} 1=1 \\
& r_{12}=\vec{q}_{1} \cdot \vec{b} 2=0 \\
& r_{13}=\vec{q}_{1} \cdot \vec{b} 3=1
\end{aligned}
$$

$$
\begin{aligned}
& r_{22}=\vec{q}_{2} \cdot \vec{b} 2=\frac{2}{\sqrt{2}} \\
& r_{23}=\vec{q}_{2} \cdot \vec{b} 3=\frac{2}{\sqrt{2}} \\
& r_{33}=\vec{q}_{3} \cdot \vec{b} 3=1
\end{aligned}
$$

So, we have

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & 0 \\
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & \frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\
0 & 0 & 1
\end{array}\right)
$$

ii)

What we have here is an overdetermined system. That is, there are more equations than there are variables (since B is a 4×3 matrix). So, Theorem 6.4 in [Notes:TH] says we need to solve the system $R \vec{x}=Q^{T} \vec{b}$.

$$
\begin{gathered}
R \vec{x}=Q^{T} \vec{b} \Rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & \sqrt{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right) \\
x_{1}+x_{3}=2 \\
\Rightarrow \quad \sqrt{2} x_{2}+\sqrt{2} x_{3}=\frac{4}{\sqrt{2}} \\
x_{3}=1
\end{gathered}
$$

We can write this as a matrix and row reduce. Indeed,

$$
\left(\begin{array}{ccc:c}
1 & 0 & 1 & 2 \\
0 & \sqrt{2} & \sqrt{2} & 2 \sqrt{2} \\
0 & 0 & 1 & 1
\end{array}\right)
$$

You should row reduce and verify that the solution is $\vec{x}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
iii) We need to do the same thing, but this time we need to solve the system $R \vec{x}=Q^{T} \vec{c}$.

$$
\begin{gathered}
R \vec{x}=Q^{T} \vec{c} \Rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & \sqrt{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \\
\quad x_{1}+x_{3}=0 \\
\Rightarrow \quad \sqrt{2} x_{2}+\sqrt{2} x_{3}=0 \\
x_{3}=0
\end{gathered}
$$

We can write this as a matrix and row reduce. Indeed,

$$
\left(\begin{array}{ccc:c}
1 & 0 & 1 & 0 \\
0 & \sqrt{2} & \sqrt{2} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

You should reduce and verify that the solution is $\vec{x}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.

Problem 3 Let $C=\left(\begin{array}{cccc}2 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$. Find the minimal length solution to $C \vec{x}=\binom{3}{0}$.

Solution :

What we have here is an underdetermined system. So, we will use Theorem 6.5 in [Notes:Th] to solve this problem. The theorem tells us that if \vec{x} is a solution to $C \vec{x}=\vec{b}$ then $C\left(P_{r} \vec{x}\right)=\vec{b}$ is a solution as well, where P_{r} is the projection onto the row space of C. Also, $P_{r} \vec{x}:=\vec{x}^{*}$ is a minimal solution.

So, first let us find a solution to the system $C \vec{x}=\binom{3}{0}$. Guess how we do that. That's right, row reduction!

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
2 & -1 & 1 & 0 & 3 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \\
\Rightarrow & \left(\begin{array}{cccc|c}
1 & 0 & \frac{2}{3} & \frac{1}{3} & 1 \\
0 & 1 & \frac{1}{3} & \frac{2}{3} & -1
\end{array}\right)
\end{aligned}
$$

Thus, we have infinitely many solutions with two parameters. That is,

$$
\vec{x}=\left(\begin{array}{c}
1-\frac{2}{3} s-\frac{1}{3} t \\
-1-\frac{1}{3} s-\frac{2}{3} t \\
s \\
t
\end{array}\right)
$$

Next we need to find P_{r}. Recall that for getting P_{r}, you have to find the $Q R$ factorization of C^{T}. Then $P_{r}=Q Q^{T}$. Fortunately C^{T} only has two columns, so this shouldn't take too long.

$$
\begin{gathered}
\vec{q}_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
1 \\
0
\end{array}\right) \\
\vec{w}_{2}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)-\left[\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
0
\end{array}\right)\right]\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
0
\end{array}\right) \\
=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)-\left[\frac{2}{\sqrt{6}}\right]\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
0
\end{array}\right)
\end{gathered}
$$

$$
=\left(\begin{array}{c}
\frac{1}{3} \\
\frac{4}{3} \\
\frac{2}{3} \\
1
\end{array}\right)
$$

So,

$$
\vec{q}_{2}=\frac{\vec{w}_{2}}{\left\|\vec{w}_{2}\right\|}=\frac{3}{\sqrt{30}}\left(\begin{array}{c}
\frac{1}{3} \\
\frac{4}{3} \\
\frac{2}{3} \\
1
\end{array}\right)
$$

Thus,

$$
\begin{aligned}
P_{r}=Q Q^{T}= & \left(\begin{array}{cc}
\frac{2}{\sqrt{6}} & \frac{3}{3 \sqrt{30}} \\
-\frac{1}{\sqrt{6}} & \frac{12}{3 \sqrt{30}} \\
\frac{1}{\sqrt{6}} & \frac{6}{3 \sqrt{30}} \\
0 & \frac{3}{\sqrt{30}}
\end{array}\right)\left(\begin{array}{cccc}
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 \\
\frac{3}{3 \sqrt{30}} & \frac{12}{3 \sqrt{30}} & \frac{6}{3 \sqrt{30}} & \frac{3}{\sqrt{30}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\frac{7}{10} & -\frac{1}{5} & \frac{2}{5} & \frac{1}{10} \\
\frac{-1}{5} & \frac{7}{10} & \frac{1}{10} & \frac{2}{5} \\
\frac{2}{5} & \frac{1}{10} & \frac{3}{10} & \frac{1}{5} \\
\frac{1}{10} & \frac{2}{5} & \frac{1}{5} & \frac{3}{10}
\end{array}\right)
\end{aligned}
$$

So,

$$
\vec{x}^{*}=\left(\begin{array}{cccc}
\frac{7}{10} & -\frac{1}{5} & \frac{2}{5} & \frac{1}{10} \\
\frac{-1}{5} & \frac{7}{10} & \frac{1}{10} & \frac{2}{5} \\
\frac{2}{5} & \frac{1}{10} & \frac{3}{10} & \frac{1}{5} \\
\frac{1}{10} & \frac{2}{5} & \frac{1}{5} & \frac{3}{10}
\end{array}\right)\left(\begin{array}{c}
1-\frac{2}{3} s-\frac{1}{3} t \\
-1-\frac{1}{3} s-\frac{2}{3} t \\
s \\
t
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{c}
\frac{7}{10} 1-\frac{2}{3} s-\frac{1}{3} t-\frac{1}{5}-1-\frac{1}{3} s-\frac{2}{3} t+\frac{2}{5} s+\frac{1}{10} t \\
-\frac{1}{5} 1-\frac{2}{3} s-\frac{1}{3} t+\frac{7}{10}-1-\frac{1}{3} s-\frac{2}{3} t+\frac{1}{10} s+\frac{2}{5} t \\
\frac{2}{5} 1-\frac{2}{3} s-\frac{1}{3} t+\frac{1}{10}-1-\frac{1}{3} s-\frac{2}{3} t+\frac{3}{10} s+\frac{1}{5} t \\
\frac{1}{10} 1-\frac{2}{3} s-\frac{1}{3} t+\frac{2}{5}-1-\frac{1}{3} s-\frac{2}{3} t+\frac{1}{5} s+\frac{3}{10} t
\end{array}\right) \\
& =\left(\begin{array}{c}
\left(\frac{7}{10}+\frac{1}{5}\right)+\left(-\frac{14}{30}+\frac{1}{5}+\frac{2}{5}\right) s+\left(-\frac{7}{30}+\frac{2}{15}+\frac{1}{10}\right) t \\
\left(-\frac{1}{5}-\frac{7}{10}\right)+\left(\frac{2}{15} s-\frac{7}{30} s+\frac{1}{10} s\right)+\left(\frac{1}{15} t-\frac{14}{30} t+\frac{2}{5} t\right) \\
\left(\frac{2}{5}-\frac{1}{10}\right)+\left(-\frac{4}{15} s-\frac{1}{30} s+\frac{3}{10} s\right)+\left(-\frac{2}{15} t-\frac{2}{30} t+\frac{1}{5} t\right) \\
\left(\frac{1}{10}-\frac{2}{5}\right)+\left(-\frac{2}{30} s-\frac{2}{15} s+\frac{1}{5} s\right)+\left(-\frac{1}{30} t-\frac{4}{15} t+\frac{3}{10} t\right)
\end{array}\right) \\
& =\left(\begin{array}{c}
\frac{9}{10}+\left(-\frac{14}{30}+\frac{2}{30}+\frac{12}{30}\right) s+\left(-\frac{7}{30}+\frac{4}{30}+\frac{3}{30}\right) t \\
-\frac{9}{10}+\left(\frac{4}{30}-\frac{7}{30}+\frac{3}{30}\right) s+\left(\frac{2}{30}-\frac{14}{30}+\frac{12}{30}\right) t \\
\frac{3}{10}+\left(-\frac{8}{30}-\frac{1}{30}+\frac{9}{30}\right) s+\left(-\frac{4}{30}-\frac{2}{30}+\frac{6}{30}\right) t \\
-\frac{3}{10}+\left(-\frac{2}{30}-\frac{4}{30}+\frac{6}{30}\right) s+\left(-\frac{1}{30}-\frac{8}{30}+\frac{9}{30}\right) t
\end{array}\right) \\
& =\left(\begin{array}{c}
\frac{9}{10} \\
-\frac{9}{10} \\
\frac{3}{10} \\
-\frac{3}{10}
\end{array}\right)
\end{aligned}
$$

Freaky... After all that multiplication, all the paramenters went away. How 'bout that.

