Math 2601 C2

Homework 7

Please do all five of the following problems and email me if you need any assistance (mullikin@math.gatech.edu). The problems are to be turned in Friday March 2, 2001 at $2: 05 \mathrm{pm}$. You may turn it in early (notice early \neq late) if for some reason you will not be in class on Friday, although I can't imagine anyone voluntarily missing one of my stellar lectures. Please please please, staple your work if it is more than one page (please). Also, you must write neatly. If I can't read your work, I can't give you any credit.

Let $x_{i}(t): \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable functions for $i=1,2,3$. Consider the following system of differential equations.

$$
\mathbb{S}=\left\{\begin{array}{c}
x_{1}^{\prime}(t)=5 x_{1}(t)+2 x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t)=x_{1}(t)+4 x_{2}(t)-x_{3}(t) \\
x_{3}^{\prime}(t)=-x_{1}(t)-2 x_{2}(t)+3 x_{3}(t)
\end{array}\right\}
$$

Problem 1 Find a matrix A so that $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$, where $\overrightarrow{\mathbf{x}}^{\prime}(t)=\left(\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t) \\ x_{3}^{\prime}(t)\end{array}\right)$ and $\overrightarrow{\mathbf{x}}(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$.

Problem 2 Find the roots of the characteristic polynomial ${ }^{1}$ for A, thus obtaining the eigenvalues.

Problem 3 Find an explicit solution for the system \mathbb{S}, with the initial conditions $x_{1}(0)=1, x_{2}(0)=2$, and $x_{3}(0)=-1$.

Problem 4 Compute A^{170574}. Hint: You are really close to having a diagonalization for A.

Problem 5 Would you be interested in a homework assignment over spring break? The possible answers to this question are either "Boy howdy! You bet I would!" or "No thanks Mr. Sadist. I would rather have a spring break, not a spring work.".

[^0]
[^0]: ${ }^{1}$ Given a polynomial equation $0=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, if there are any rational roots, then they will be of the form $\pm \frac{x_{i}}{y_{j}}$, where $\left\{x_{i}\right\}$ is the set of all divisors of $\left|a_{0}\right|$, and $\left\{y_{j}\right\}$ is the set of all divisors of $\left|a_{n}\right|$.

