An example

Lets consider a linear operator $T: \mathcal{P}_{1} \longrightarrow \mathcal{P}_{2}$ where $T(p(x))=\int_{0}^{x} p(t) d t$. Let the basis for \mathcal{P}_{1} and \mathcal{P}_{2} be $\mathfrak{B}_{1}=\{1+x, 1-x\}$ and $\mathfrak{B}_{2}=\left\{1+x, 1+x^{2}, x+x^{2}\right\}$ respectively. The goal is to find the matrix ${ }_{\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{T}$.

Recall that the matrix has the form,

$$
{ }_{\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{T}=\left[\begin{array}{cc}
\mid & \mid \\
\Psi_{\left\{\mathfrak{B}_{2}\right\}}(T(1+x)) & \Psi_{\left\{\mathfrak{B}_{2}\right\}}(T(1-x)) \\
\mid & \mid
\end{array}\right]
$$

So, first we need to find $T(x+1)$ and $T(1-x)$.

$$
\begin{aligned}
& T(x+1)=\int_{0}^{x}(t+1) d t=\frac{1}{2} x^{2}+x \\
& T(1-x)=\int_{0}^{x}(1-t) d t=x-\frac{1}{2} x^{2}
\end{aligned}
$$

Next we need to find out what these vectors look like in terms of coordinates. That is, find $\Psi_{\left\{\mathfrak{B}_{2}\right\}}\left(\frac{1}{2} x^{2}+x\right)$. Well, we know, by definition, $\Psi_{\left\{\mathfrak{B}_{2}\right\}}\left(\frac{1}{2} x^{2}+x\right)=$ $\left(c_{1}, c_{2}, c_{3}\right)$ where c_{1}, c_{2}, and c_{2} satisfy the equation,

$$
\frac{1}{2} x^{2}+x=c_{1}(1+x)+c_{2}\left(1+x^{2}\right)+c_{3}\left(x+x^{2}\right)
$$

Multiplying this out we see that we have,

$$
\frac{1}{2} x^{2}+x=\left(c_{1}+c_{2}\right)+\left(c_{1}+c_{3}\right) x+\left(c_{2}+c_{3}\right) x^{2}
$$

So we must solve the system of equations,

$$
\begin{aligned}
& c_{1}+c_{2}=0 \\
& c_{1}+c_{3}=1 \\
& c_{2}+c_{3}=\frac{1}{2}
\end{aligned}
$$

so that all of the coefficients of $1, x$, and x^{2} match up. Bring on the row reduction!

So we have $c_{1}=\frac{1}{4}, c_{2}=-\frac{1}{4}$, and $c_{3}=\frac{3}{4}$. You can check and see that $\frac{1}{4}(1+x)-\frac{1}{4}\left(1+x^{2}\right)+\frac{3}{4}\left(x+x^{2}\right)=x+\frac{1}{2} x^{2}$ as desired. Thus we have found the first column of the matrix ${ }_{\left\{\mathfrak{B}_{2}\right\}} M_{\left\{\mathfrak{B}_{1}\right\}}^{T}$ to be $\left(\begin{array}{c}\frac{1}{4} \\ -\frac{1}{4} \\ \frac{3}{4}\end{array}\right)$. We find the second column in the same way. We know $T(1-x)=x-\frac{1}{2} x^{2}$ and so, after solving another system of equations, we have $\Psi_{\left\{B_{2}\right\}}=\left(\frac{3}{4},-\frac{3}{4}, \frac{1}{4}\right)$. So, finally,

$$
\left\{\mathfrak{B}_{2}\right\} M_{\left\{\mathfrak{B}_{1}\right\}}^{T}=\left[\begin{array}{cc}
\frac{1}{4} & \frac{3}{4} \\
-\frac{1}{4} & -\frac{3}{4} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right]
$$

Let us test our result on an arbitrary polynomial $a+b x \in \mathcal{P}_{2}$. Remember, first we need to compute to coordinates of $a+b x$ in the basis \mathfrak{B}_{1}. So, we readily see that $a+b x=\frac{a+b}{2}(1+x)+\frac{a-b}{2}(1-x)$ by solving a system of two equations as we did above to find the coordinates. So, to find $T(a+b x)$ we perform the matrix multiplication,

$$
\left.\begin{array}{c}
\left\{\mathfrak{B}_{2}\right\} \\
=\left[\begin{array}{cc}
\frac{1}{4} & -\frac{3}{4} \\
-\frac{1}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
\frac{a+b}{2} \\
\frac{a-b}{2}
\end{array}\right] \\
=\left[\begin{array}{c}
\frac{a+b}{2} \\
\frac{a-b}{2}
\end{array}\right] \\
\frac{-2 a+b}{4} \\
\frac{2 a+b}{4}
\end{array}\right] .
$$

Looks icky right? Remember the output of this matrix multiplication is in the bizarro basis \mathfrak{B}_{2}. To translate into something more friendly we need to see what this looks like in the standard basis. So, we have the coordinates and the basis. Multiply it out.

$$
\begin{gathered}
\frac{2 a-b}{4}(1+x)+\frac{-2 a+b}{4}\left(1+x^{2}\right)+\frac{2 a+b}{4}\left(x+x^{2}\right) \\
=\frac{2 a-b+-2 a+b}{4}+\frac{2 a-b+2 a+b}{4} x+\frac{-2 a+b+2 a+2}{4} x^{2} \\
=a x+\frac{b}{2} x^{2}
\end{gathered}
$$

Do you believe it? Sure, the transformation took a polynomial to its integral evaluated at x. So, $T(a+b x)=\int_{0}^{x}(a+b t) d t=a x+\frac{b}{2} x^{2}$. How 'bout 'dem apples!

