
Finding Matrix Inverses:
Elementary Matrices

The questions at hand are, if I am given a general n×n matrix A, when can
I compute its inverse, and how do I do it? Before we answer these questions,
we must answer a question that is hiding in the background. Specifically, what
do we mean when we say inverse.

Definition : Let A be an n×n matrix, if there exists another n×n matrix
B so that BA = AB = I where I denotes the n × n identity matrix, then we
say B is the inverse of A and we write B = A−1.

Notice, that in the above definition I am insisting that both A and A−1 be
square matrices. Then, with this restriction, it is true that if A−1 exists, then
it is unique. So, when can we find an inverse of a matrix? Recall the pictures
drawn on the board during class where I was describing the kernel and image of
a given linear transformation. I mumbled something about an inverse existing
if and only if the kernel is empty. Why would this be? Well, suppose it wasn’t
empty. That is suppose that A~x = ~0 for some ~x 6= ~0. Notice also, since A is
a linear transformation, we know A~0 = ~0. Now, try to describe where to send
A−1(~0). Does it go to ~x or does it go to ~0? How do you choose? The problem is
we cannot come up with a consistent way to send one point to many (this is like
a function not passing the vertical line test). So, in order for an inverse to even
make an inkling of sense, we must require that the only element in the kernel of
an invertible matrix is zero. Is that enough? Well, that along with the condition
that the matrix be square, yes. So, if a square matrix has empty kernel, then
it must be able to be row reduced to the identity matrix right. Thus, it will
have a pivotal 1 in each column and so the matrix will have full rank. That is,
is A is an invertible n × n matrix, then ImA = Rn. A nice way to determine
if a square matrix is invertible or not is to take a determinant. Since, an n× n
matrix will have nonzero determinant if and only if its kernel only contains the
zero vector. I.e. det(A) 6= 0 if and only if A has full rank if and only if A is
invertible. Notice that if A is a change of basis matrix from Rn into Rn then A
must have full rank (since it sends one basis onto another basis) and is therefore
invertible.

Now we need to answer the second question. How do we find the inverse.
You may recall, from 1502, the notion of elementary matrices. An elementary
matrix is a matrix that represents one elementary row operation on the identity
matrix. For example, the elementary matrix representing the row operation
(R2 = R2 + (−3)R1) on a 3× 3 matrix is the matrix,




1 0 0
0 1 −3
0 0 1
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The matrix representing swapping row three with row two would be,



1 0 0
0 0 1
0 1 0




Get the idea? So what? ”Why is this nice?”, you may inquire. Suppose I wanted
to keep track of all the row operations I perform on a given matrix. Then, I
would only need to keep a list of the elementary matrices. Better than that, I
can keep all the information involved in the row reduction by multiplying the
elementary matrices together. They must be multiplied in a proper order from
left to right with the left most matrix being the row operation last performed and
the right most matrix being the first row reduction operation performed! Let’s
look at an example. Consider the matrix,

A =




1 0 0
0 3 4
0 1 0




Now lets perform row operations and reduce A to the identity.



1 0 0
0 3 4
0 1 0


 (R2 = R2 + (−3)R3)




1 0 0
0 0 4
0 1 0




(R2 ↔ R3)




1 0 0
0 1 0
0 0 4


 ( 1

4R3)




1 0 0
0 1 0
0 0 1




Now, what elementary matrices do we have? We already know two. The third
is the matrix, 


1 0 0
0 1 0
0 0 1
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So, if I wanted to write down all of the row reduction steps I used I would find
the matrix product,



1 0 0
0 1 0
0 0 1
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1 0 0
0 0 1
0 1 0







1 0 0
0 1 −3
0 0 1


 =




1 0 0
0 1 0
0 0 1
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1 0 0
0 0 1
0 1 −3


 =




1 0 0
0 0 1
0 1

4 − 3
4




Wow... Neat... So what? So, I claim we have found,

A−1 =




1 0 0
0 3 4
0 1 0



−1

=




1 0 0
0 0 1
0 1

4 − 3
4




Let’s check it out.


1 0 0
0 3 4
0 1 0







1 0 0
0 0 1
0 1

4 − 3
4


 =




1 + 0 + 0 0 + 0 + 0 0 + 0 + 0
0 0 + 0 + 4 1

4 0 + 3 + 4−3
4

0 + 0 + 0 0 + 0 + 0 0 + 1 + 0


 =




1 0 0
0 1 0
0 0 1
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How cool is that?! So to find inverses we only need to keep track of the ele-
mentary operations involved in reducing to the identity. It turns out there is a
really easy way to do that. Given a matrix A put the identity matrix next to it.
Then whenever you do a row operation on A do the same row operation on the
identity. This way you will keep track of the product of elementary matrices
without even having to multiply! When A has been reduced to the identity then
the other matrix will have been changed into A−1. Let’s do an example with
the same matrix above to illustrate.




1 0 0 | 1 0 0
0 3 4 | 0 1 0
0 1 0 | 0 0 1




(R2 = R2 + (−3)R3)




1 0 0 | 1 0 0
0 0 4 | 0 1 −3
0 1 0 | 0 0 1




(R2 ↔ R3)




1 0 0 | 1 0 0
0 1 0 | 0 0 1
0 0 4 | 0 1 −3




(
1
4
R3)




1 0 0 | 1 0 0
0 1 0 | 0 0 1
0 0 1 | 0 1

4 − 3
4




Neat huh? This result can be generalized to n×n matrices for any n. So, to
sum up, to find the inverse of a matrix first see if it exists. To do this just take
a determinant. If the determinant is not zero then the inverse exists. Stick the
identity matrix next to the one you are trying to invert. Perform row operations
on the matrix you are trying to invert until it is brought to the identity matrix,
all the while performing the same operations on the appended identity matrix.
When you are done row reducing, the appended identity matrix will have been
transformed into the inverse matrix. Magic!
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