
Linear algebra for MATH2601
Numerical methods

László Erdős

August 12, 2000

Contents

1 Introduction 3

1.1 Types of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Rounding errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Truncation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Conditioning errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Matrix norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Condition number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Partial pivoting, LU factorization 19

2.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Gaussian elimination with partial pivoting . . . . . . . . . . . . . . . . . . . . 21

2.3 LU factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Gaussian elimination revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 QR factorization revisited 30

3.1 Gram-Schmidt revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 2

3.2 Householder reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 QR factorization with Householder reflection . . . . . . . . . . . . . . . . . . . 33

3.4 Givens rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 QR factorization with Givens rotations . . . . . . . . . . . . . . . . . . . . . . 38

4 Iterative methods 45

4.1 What a two year old child can do . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Iterative methods for Ax = b . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Jacobi iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Gauss-Seidel iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Numerical computation of eigenvalues 60

5.1 Power method for eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Jacobi method for eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 QR iteration for eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Summary 74

6.1 Methods for Ax = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Theoretical methods for Ax = b. . . . . . . . . . . . . . . . . . . . . . 74

6.1.2 Numerical methods for Ax = b. . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Methods for diagonalizing a square matrix A . . . . . . . . . . . . . . . . . . . 77

6.2.1 Theoretical methods for diagonalizing A, finding eigenvalues, -vectors . 77

6.2.2 Numerical methods for diagonalizing A, finding eigenvalues, -vectors . . 78



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 3

1 Introduction

In this note we discuss a couple of numerical methods of linear algebra. We rely on the

theoretical material developed in the notes “Linear algebra for MATH2601: Theory”.

Recall from the Introduction (Section 1.3) of “Linear algebra for MATH2601: Theory”,

that there are two basic problems:

(I) Give a full solution to Ax = b. If there is no exact solution, then find the “best

approximating solution” (Least square method)

(II) Find the eigenvalues, eigenvectors of a square matrix A. (For nonsquare matrix, find

the singular value decomposition (SVD))

Based upon the theory, we know how to solve both problems. However, when implementing

these methods on a computer there are always rounding errors. In addition, the eigenvalue

problem requires finding the roots of a polynomial, which, in general, cannot be done exactly,

only approximately (by Newton’s iteration, for example). Finally, the data are measured

quantities, hence they are slightly inaccurate, but we do not want huge inaccuracy in the

solution. A good numerical method must deal with these issues.

There are two main concerns in every numerical scheme: How precise is it and how long

does it take?

(i) The errors in long computations can accumulate. This is a serious issue even with high

precision computers. Hence it is desirable to develop methods to solve problems (I) and (II)

which are stable in a sense that computational errors remain under control: small errors in

the data or small rounding errors along the computation should not influence the result too

much. This requires more sophisticated methods than we have encountered so far.



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 4

(ii) The length of a computation depends on how many elementary steps (say elementary

operations; additions, multiplications) one has to perform. Current high speed computers

can multiply huge numbers in incredible short time. Nevertheless, speed is still an important

issue. In real applications one might have to deal with matrices of dimensions several hundred

thousands (for example in a discrete scheme for the solution of a PDE).

In general it is not easy to find a good tradeoff between these two issues. Of course longer

calculations typically lead to more accurate results (more digits taken etc.). But does it pay

off? And how much time (how elaborated method, how many number of steps, how good

arithmetic precision etc.) do I need for the required accuracy in the result? If I buy twice as

much time on a supercomputer, do I get a significantly better result? Or, if I buy only one

hour, do I get an acceptable result at all?

Finally, let us close with saying that “Mathematics is science, computing is art”. There

are infinitely many methods and tricks developed by numerical experts to make things faster

and more accurate. Some of them have a strong theoretical background, some of them are

known to work “properly” in most cases or in certain special cases of interest, and even there

some “rules of thumb”. Here we consider only those aspects of numerical mathematics which

are well understood from mathematical point of view.

1.1 Types of errors

There are three sources of errors in a general numerical computation:

(i) Rounding errors

(ii) Truncation errors.

(iii) Conditioning errors.

We discuss them separately.



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 5

1.1.1 Rounding errors

Rounding errors are due to explicit calculations on a computer. Every number is stored by

a finite number of bits. There are various protocols, the most commonly used is the floating

point representation. The IEEE standard single precision uses 32 bits to represent a number.

The first bit is the sign of the number (s). The next eight bits is the exponent (e). The last

23 bits express the fraction (f < 1). The number represented is

N = (−1)s · 2e−127 · (1 + f)

For example N = 51.25 is written first in binary system N = 25 + 24 + 21 + 20 + 2−2, i.e. as

N = 110011.01, or N = 1.1001101× 25. Hence s = 0, e = 132 = 10000100, f = 0.1001101. In

the computer f is represented as 1001101, i.e. the binary point and the first zero are omitted.

The underflow threshold is 2−126, the overflow threshold is 2128, hence numbers between

≈ 10−38 and ≈ 1038 in absolute value can be represented.

The double precision representation uses 64 bits, allocated in a similar way (1 for the sign,

11 for the exponent, 52 for the fraction), and it extends the range of represented numbers

from about 10−308 to 10308 in absolute value.

Let fl(a) denote the floating point representation of the number a. This is of course only

an approximation of the true number a. The error is the difference δa = a − fl(a) (usually

it is denoted by δa or ∆a, and in this notation δ or ∆ is not a number but a symbol which

is meaningful only together with a). When performing computations, we usually want to

compute binary operations with two numbers, a and b, for example a+ b or a · b, but actually

we are computing fl(a)+fl(b) or fl(a) ·fl(b), and the computer stores only the floating point

representation of the result of these operations. The errors can clearly accumulate. Rounding

errors in additions and substractions usually add up (in the worst case). Rounding errors

for multiplications depend on the size of the numbers, in fact instead of the absolute error



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 6

|δa| = |a− fl(a)|, the relative error

|δa|

|a|
=
|a− fl(a)|

|a|

is more relevant, which typically add up (again in the worst case). Division is the least stable

operation, especially if the divisor is close to zero.

One might think that the range of numbers stored even with the single precision arithmetic

should be enough for any real life applications without further care. However, there are two

phenomena which require special attention:

(i) Many algorithms proceed differently if a number is zero or not (“IF... THEN... ELSE”).

Rounding errors could completely mislead the algorithm. (E.g. the choice of pivot in the

Gauss elimination depends on whether a number is zero or not. There could be an entry that

is zero in reality, if precise computation were done, but happens to be 10−30 on the computer.

A carelessly programmed Gauss algorithm could choose this number as pivot.) The most

expensive error known to have been caused by an improperly interpreted “almost zero” is the

crash of the Ariane 5 rocket of the European Space Agency on June 4, 1996. (This example

was pointed out in “Applied numerical linear algebra” by J. W. Demmel (SIAM, 1997), see

http://www.cs.berkeley.edu/~demmel/ma221/ariane5rep.html).

(ii) Many algorithms have a systematical instability. This means that that the rounding

errors do not “cancel”, rather they magnify each other. I.e. “bad becomes worse”, and this

is not due to a bad luck, but is inherent in the system. Once a small error is made, it will be

magnified.

1.1.2 Truncation errors

Gauss elimination and Cramer’s rule are examples of direct methods. This means that they

would produce an exact solution to a problem in finite number of elementary steps (addition,

subtraction, multiplication, division). In contrast to these methods, for example, the Newton’s



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 7

method is iterative. It produces a sequence of approximate solutions xk instead of the true

solution x, hopefully with ‖xk−x‖ → 0. This means that the approximate solutions converge

to the true solution in some sense (measured in some distance or norm). This is called the

consistency of the method. But you must end the sequence after some k0 steps, since eventually

you have to present the result to your boss within a finite time. Even if the method were

consistent and no rounding errors were made, what you present as a solution is xk0 and not

the true x. The error ‖x− xk0‖ is called truncation error.

Estimating the truncation error is especially important in order to decide when to stop the

iteration. Usually you know how accurate result you want, e.g. you know that you stop as

soon as ‖x− xk0‖ falls below 10−4. But you do not know x, only the sequence x1, x2, . . . xk0 .

You need an estimate on the distance of xk0 from the true but unknown solution x based upon

the sequence you already computed.

You have seen similar error estimates at numerical integration which were needed to set

the stepsize (number of points in the subdivision). For example when you computed a definite

integral by the rectangular or trapezoid or Simpson rule, the accuracy depended on the number

of intervals in the subdivision (See Salas-Hille, Section 8.7). Finer subdivision meant more

precise result and the error estimates gave you a hint on the necessary number of intervals to

reach a given accuracy.

Similar estimates are well known for most iterative methods and they are related to the

speed of convergence of the method.

1.1.3 Conditioning errors

The data used in any applications are not exact. They usually come from measurements

with a certain accuracy. In fact, instead of saying that the length of a rod is 3.2 meters, it

would be more honest to say that it is between two numbers, depending on how accurately

you measured it. E.g. it is probably between 2.7 and 3.7 meters if you just estimated it by



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 8

“looking at it” and it is between 2.19 and 3.21 meters if you measured it with a ruler, while it

can be between 2.1999 and 3.2001 meters if you measured it with more sophisticated tools. In

engineering literature this is usually expressed as 3.2± 10−2 or 3.2± 10−4 meters. Sometimes

the number of shown digits indicate the precision: 3.20 refers to two accurate digits, while

3.2000 refers to four.

This is called interval arithmetic, since each number is replaced by an interval of a certain

length around its “most likely” value.

It is certainly important to predict the sensitivity of the output on the data in any mathe-

matical model and method. We know for example that dividing by small numbers is a sensitive

operation, if we want to solve the equation

0.001x = 34 (1.1)

then we’d better make sure that 0.001 and 34 are precise, otherwise the solution is very

inaccurate. If the true coefficient is 0.0011 instead of the measured 0.001, then the true result

x = 34
0.0011

≈ 30909 instead of the computed x = 34
0.001

= 34000. A tiny inaccuracy in the input

gave a huge inaccuracy in the result. You might say that the relative inaccuracy of the data

was not too small, eventually 0.001 differs from 0.0011 by 10%. This is true, but 0.0011 could

have been obtained as a result of some earlier calculation, for example as a difference of two

“big” numbers: 0.0011 = 1.234− 1.2329. Here a tiny inaccuracy in 1.2329 (e.g. using 1.233

instead) changes the solution of (1.1) drastically.

It is important to emphasize that this problem has nothing to do with computers, running

times or rounding errors. It inherently comes from the type of question we asked: the original

mathematical question to solve ax = b is ill-conditioned for small a.

You might think that it is easy to recognize when and why things go wrong. Here is a



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 9

warning example (from “Introduction to numerical linear algebra and optimisation” by P.

Ciarlet, Cambridge Univ. Press, 1989)

The problem is to solve the following system of four equations for four unknowns of the

form Ax = b (I already wrote it in the matrix notation)
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1

x2

x3

x4

 =


32
23
33
31


The solution is

x =


1
1
1
1


as you can easily convince yourself.

Now suppose that the numbers in the b vector are slightly modified (due to measurement

error) and we consider the system
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1

x2

x3

x4

 =


32.1
22.9
33.1
30.9


Certainly you would not expect too much deviation in the solution just by changing the entries

of the vector b by 10−1, which correspond to a relative error of order ≈ 10−1/23 ≈ 10−2. But

the solution of the new system is

x =


9.2
−12.6
4.5
−1.1


which even does not resemble the original solution! The (biggest) relative error is around

13.6
1
≈ 10. The amplification of the relative errors is of order 1000!!



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 10

As another example, let us suppose now that the entries of the matrix are measured

incorrectly and the modified problem is
10 7 8.1 7.2

7.08 5.04 6 5
8 5.98 9.89 9

6.99 4.99 9 9.98



x1

x2

x3

x4

 =


32
23
33
31


The solution is

x =


−81
137
−34
22


and it is again very far from the original solution despite a tiny change in A.

Since the solution is x = A−1b, one might think that the problem is that the original

matrix A has a “bad” inverse, analogously to (1.1). But its inverse is “nice”

A−1 =


25 −41 10 −6
−41 68 −17 10
10 −17 5 −3
−6 10 −3 2


and even det(A) = 1, so Cramer’s formula should be OK, too. What goes wrong?

The real reason why this matrix behaves so badly is that it has a very small eigenvalue.

The eigenvalues of A are

λ1 ≈ .01015 < λ2 ≈ .8431 < λ3 ≈ 3.858 < λ4 ≈ 30.2887

None of them are big, but the really important quantity is the ratio of the biggest and smallest

eigenvalue, which is
λ4

λ1
≈ 2984 (1.2)

The fact is that the relative error in the data can be amplified by this amount in the worst

case.

To understand this phenomenon, we first have to introduce some tools.



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 11

1.2 Matrix norms

Recall that a vector v ∈ Rn has a norm or length, defined as

‖v‖ :=
√

vt · v =
√
v2

1 + v2
2 + . . .+ v2

n (1.3)

This number gives an information about “how large” the vector is. There are other ways to

measure the size of a vector, for example you could have taken the maximum of |vi|’s or their

sum |v1|+ . . .+ |vn|. Which one to use, depends on the applications. Here we will always use

the norm (1.3) as this is the most common vector norm.

The basic properties of the norm are the following

‖v‖ = 0 ⇐⇒ v = 0 (1.4)

‖αv‖ = |α| ‖v‖ for every α ∈ R (1.5)

‖u + v‖ ≤ ‖u‖+ ‖v‖ (1.6)

(triangle inequality).

It is important to note that the norm is insensitive to the direction of the vector. This

means that if you rotate or reflect the vector, its norm (length) does not change. However,

rotation and reflection makes sense only in n = 2, 3 dimensions. The right generalization

of rotations and reflections is precisely defined via the property that the norm is preserved.

Recall these are exactly the orthogonal transformations.

How to measure the size of a matrix A = (aij)? Again, there are various ways to do this.

It seems that the analogue of the vector norm√√√√ n∑
i=1

m∑
j=1

a2
ij (1.7)



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 12

is a convenient quantity, in particular it satisfies all the three properties above (in fact this is

exactly the vector norm above if you forget about the rectangular shape of the matrix, just

write their entries into a long mn-vector). This norm is actually often used, and is called

the Hilbert-Schmidt norm of the matrix. We already used this norm in the singular value

decomposition.

However, this is not the most common way to measure the size of a matrix. The following

norm is more complicated than (1.7), but it will be a very convenient tool.

Definition 1.1 The norm of an n×m matrix A is

‖A‖ := max
v∈Rn

v 6=0

‖Av‖

‖v‖
(1.8)

REMARK 1: Notice that this matrix norm is defined via the vector norms in the spaces

Rn and Rm. The ratio ‖Av‖
‖v‖ measures the amount of magnification of the vector v under the

action of A (recall that a matrix can be viewed as a linear transformation). Hence the norm

‖A‖ measures the biggest possible magnification of A.

REMARK 2: The norm of any orthogonal matrix Q is ‖Q‖ = 1. Recall that orthogonal

transformations preserve the norm of any vector, i.e ‖Qv‖ = ‖v‖.

REMARK 3: The Maple command to compute the norm of a matrix A is norm(A,2).

Here 2 refers exactly to the norm we defined in (1.8). There are several other norms, and the

default of Maple (command norm(A)) is not the norm we defined.

The following crucial property follows immediately from the definition:

‖Av‖ ≤ ‖A‖ ‖v‖ for any v ∈ Rn. (1.9)

Although we use the same notation ‖ ‖ for vector and matrix norms, these are separately

defined by (1.3) and (1.8). This should not cause confusion, since what you have “inside the



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 13

norm” should tell you which norm you use. For example on the left hand side of (1.9) ‖ ‖

means the vector norm in Rm, the first norm on the right hand side is the matrix norm defined

in (1.8) and finally the last norm is the vector norm in Rn.

Lemma 1.2 The matrix norm ‖A‖ satisfies the analogues of the properties (1.4)-(1.6), i.e.

‖A‖ = 0 ⇐⇒ A = 0 (1.10)

‖αA‖ = |α| ‖A‖ for every α ∈ R (1.11)

‖A+B‖ ≤ ‖A‖+ ‖B‖ (1.12)

In addition, if m = n, then

‖AB‖ ≤ ‖A‖ ‖B‖ (1.13)

The proof is left as an exercise (DO IT (*))

Since the matrix norm expresses the amount of magnification, it could be related to eigen-

values, at least for square matrices. Plugging an eigenvector into (1.9) we easily see that

‖A‖ ≥ |λ| for all eigenvalue λ. It would be nice if ‖A‖ were actually the largest eigenvalue.

This is indeed true for symmetric matrices, but not for general square matrices (GIVE AN

EXAMPLE (*) Hint: A =
(

0 1
0 0

)
). However, we have the following theorem:

Theorem 1.3 (i) Let A be an n× n symmetric matrix. Then

‖A‖ = max
i
|λi(A)|

where λi(A) for i = 1, 2, . . . n are the eigenvalues of A.

(ii) Let A be a general n× n matrix. Then

‖A‖ = max
i

√
λi(AAt)

where λi(AA
t) for i = 1, 2, . . . n are the eigenvalues of AAt.



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 14

REMARK 1.: Notice that we omitted the absolute value under the square root. This is

because the eigenvalues of AAt are always nonnegative. (WHY(*)? Hint: let AAtv = λv, and

take the scalar product of this equation with vt)

REMARK 2.: In fact the nonzero eigenvalues ofAAt andAtA coincide, hence maxi λi(AA
t) =

maxi λi(A
tA). The proof of this fact is easy for invertible matrices (PROVE IT (*)) and

slightly harder for singular matrices.

Proof of (i) of Theorem 1.3. Recall the Spectral Theorem

A =
n∑
i=1

λiviv
t
i

where λi,vi are the eigenvalues-eigenvectors of A. Recall that the eigenvectors can be assumed

orthonormal. Then for any u ∈ Rn

Au =
n∑
i=1

λi(v
t
i · u)vi

and by the Parseval identity

‖Au‖2 =
n∑
i=1

λ2
i (v

t
i · u)2.

We can estimate all eigenvalues by the largest one in absolute value, i.e.

‖Au‖2 ≤
(

max
i=1,2,...

λ2
i

) n∑
i=1

(vti · u)2

Again by the Parseval identity
n∑
i=1

(vti · u)2 = ‖u‖2

hence

‖Au‖2 ≤
(

max
i=1,2,...

λ2
i

)
‖u‖2

from which ‖A‖ ≤ maxi=1,2,... |λi| follows.



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 15

The opposite inequality ‖A‖ ≥ maxi=1,2,... |λi| is easy to see just by plugging into (1.9) the

eigenvector that belongs to the biggest (in absolute value) eigenvalue. (THINK IT OVER

WHY(*))

The proof of part (ii) of Theorem 1.3 is not much harder, but we omit it here. 2

1.3 Condition number

Let A be an invertible matrix. Assume that we solve the equation Ax = b and we also solve

the equation Ax′ = b + δb for some small perturbation of b by δb (this is the situation of

the example in Section 1.1.3). Write x′ = x + δx, where δx is the deviation of the solution of

the perturbed system from the original solution. We emphasize that both systems are solved

exactly, there are no rounding errors. Comparing

Ax = b and A(x + δx) = b + δb

we see that δx = A−1δb, and we also have b = Ax. Hence (see (1.9))

‖δx‖ ≤ ‖A−1‖ ‖δb‖ and ‖b‖ ≤ ‖A‖ ‖x‖

Hence the relative error of the solution, measured by ‖δx‖/‖x‖, is bounded in terms of the

relative error ‖δb‖/‖b‖ in the datum b as follows

‖δx‖

‖x‖
≤ ‖A‖ ‖A−1‖

‖δb‖

‖b‖
(1.14)

The number

cond(A) := ‖A‖ ‖A−1‖

i.e., product of the norms of A and A−1 is called the condition number of the matrix A.

This number shows how much a small error in the input data can be magnified in the output.

Is is clear that

cond(A) ≥ 1



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 16

for any matrix (WHY(*)?), i.e. errors can only get amplified.

The Maple command to compute the condition number of a matrix A is cond(A,2).

In case of symmetric matrices ‖A‖ = |λmax|, where λmax is the eigenvalue biggest in abso-

lute value (i.e. |λmax| ≥ |λ| for all other eigenvalues). The eigenvalues of A−1 are the inverses

of the eigenvalues of A (WHY(*)?), hence the eigenvalue of A−1 biggest in absolute value is

actually the inverse of the eigenvalue of A that is smallest in absolute value. (WARNING:

The norm of the inverse matrix A−1 is NOT the inverse of the norm of A, i.e. ‖A−1‖ 6= 1
‖A‖).

Hence for symmetric matrices

cond(A) =
|λmax(A)|

|λmin(A)|

where |λmin| ≤ |λ| ≤ |λmin| for all other eigenvalues λ.

For nonsymmetric matrices ‖A‖ is the square root of the biggest eigenvalue of the sym-

metric matrix AAt by Theorem 1.3. Similarly, ‖A−1‖ is obtained from the biggest eigenvalue

of A−1(A−1)t = (AtA)−1, which is just the inverse of the smallest eigenvalue of AtA. Recall

(Remark 2. after Theorem 1.3) that the nonzero eigenvalues of AAt and AtA coincide. Hence

we have

cond(A) =

√√√√λmax(AAt)

λmin(AAt)
(1.15)

In the example of Section 1.1.3 we have cond(A) ≈ 2984 (see (1.2)). Despite the fact that

both A and A−1 look “reasonable” matrices, the condition number of A is quite big, mainly

because the smallest eigenvalue is near zero. This is why a small error in the right hand side

could become a huge error in the solution.

Similar estimate is valid for the case when the matrix A is perturbed instead of b. As

before, let Ax = b be the original equation and let (A+ ∆A)(x + δx) = b be the perturbed



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 17

equation with exact solutions. Then (PROVE IT (*))

‖δx‖

‖x + δx‖
≤ cond(A)

‖∆A‖

‖A‖

For small enough ∆A it is expected that the ratio ‖δx‖/‖x+ δx‖ is close to the relative error

‖δx‖/‖x‖.

To summarize, we have:

CONCLUSION: When solving an equation Ax = b, a small error either in b or in A can

get multiplied by a factor of cond(A) = ‖A‖ ‖A−1‖ ≥ 1 in the solution. If this number is

big, then we say that the problem is ill-conditioned. In general a mathematical problem is

ill-conditioned, if a small change in the input data yields a big change in the output.

REMARK: These arguments are just estimates on the error. In fact they are optimal in

a sense that there is always an error which gets magnified by the amount cond(A). However,

this is only the worst case scenario. Most errors do not get magnified so much. Play with

the example in Section 1.1.3 by perturbing the data differently and find the exact solution.

You will see that most perturbations actually do not cause a big deviation in the solution.

This example was actually a carefully designed “worst-case” scanario. However, it can be

shown that the condition number correctly estimates the error-amplification in the worst case

scenario. In other words for any matrix A there is a perturbation which gets magnified by

cond(A).

You might say that if “most” perturbations do not lead to disaster, then “most likely”

you will never encounter with it and you do not have to worry about it. This is certainly

an irresponsible attitude. Rare disasters are still disasters; if one plane crashes, it is not a

satisfactory excuse to say that the other five hundred planes did not...

Problem 1.4 Find the condition number of A =
(

1 2
1 1

)



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 18

SOLUTION: Using formula (1.15) we need to compute the eigenvalues of

AAt =
(

5 3
3 1

)

which are λ1 = 0.1459 and λ2 = 6.854, hence

cond(A) =

√
6.854

0.1459
= 6.782


