
LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 19

2 Partial pivoting, LU factorization

2.1 An example

We emphasize again, that all the calculations in the example in Section 1.1.3 were exact,

i.e. the amplification of errors was not due to numerical inaccuracy; the given system was

ill-conditioned. There is not much one could do about it on the mathematical or even com-

putational level, apart from warning the user about the problem. In the worse case one could

ask for more accurate data, but it is much better if the modelling of the applied problem is

changed to a better conditioned problem.

The following example, however, shows that even a well-conditioned problem can be made

unstable by a carelessly designed algorithm. And this is the responsibility of the computational

expert.

Suppose that we use a floating point arithmetic with all numbers rounded to three signif-

icant digits (i.e. to facilitate the idea we use decimal system). Let

A =
(

10−4 1
1 1

)
and b =

(
1
2

)
and consider the system Ax = b. The solution of this system is

xtrue ≈
(

1.00010 . . .
0.99990 . . .

)
≈
(

1
1

)
Now we apply Gaussian elimination. It is possible to take 10−4 as a pivot since it is a

nonzero number. The elimination step gives 10−4 1
∣∣∣ 1

1 1
∣∣∣ 2

 =⇒

 10−4 1
∣∣∣ 1

0 −9999
∣∣∣ −9998


However the numbers 9999 and 9998 are both rounded to the same number 9990, i.e. the

computer stores only  10−4 1
∣∣∣ 1

0 −9990
∣∣∣ −9990



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 20

and this system has a solution

x =
(

0
1

)
What went wrong? Based upon the example in Section 1.1.3, you might think that the

problem is ill-conditioned. Compute the eigenvalues of A (DO IT(*)), and you get that

cond(A) ≈ 2.618

which is not a big number. It certainly does not justify that a rounding error of relative size

10−3 got amplified by a factor of 1000.

On the other hand if first we interchange the two rows, and we choose the a21 = 1 as a

pivot element, then we get 10−4 1
∣∣∣ 1

1 1
∣∣∣ 2

 =⇒

 1 1
∣∣∣ 2

10−4 1
∣∣∣ 1

 =⇒

 1 1
∣∣∣ 2

0 0.999
∣∣∣ 0.999


since the true numbers 0.9999 and 0.9998 in the second row are both rounded to 0.999. Now

this system has a solution

x =
(

1
1

)
which is very satisfactory considering the true solution xtrue.

The first algorithm is an example of an unstable method, while the second is stable. Sta-

bility of the method expresses how much the rounding errors can accumulate. It is a different

issue than conditioning. Recall that being well or ill-conditioned is a property of the mathe-

matical problem and it has nothing to do with computations. The output of an ill-conditioned

problem will not be reliable even with the most perfect computational methods. However,

even a well-conditioned problem could be “spoiled” by an unstable method, which usually

means that the reliability (relative output error versus relative input error) of the algorithm

is much worse than the condition number predicts. It also means that errors that “pop up” in

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 21

the computation from rounding could get amplified along the further steps of the algorithm.

Therefore, it is a crucial effort in numerical analysis to come up with methods which do not

make things worse than they are.

2.2 Gaussian elimination with partial pivoting

The trouble in the example above was that the pivot was a very small number (relatively to

all other numbers). Recall that along the Gauss elimination we have to divide by the pivot

and dividing by small numbers in general is dangerous. But it is very easy to eliminate this

problem just by a row exchange. Recall that at every step of the Gauss elimination one is

allowed to choose any nonzero element in the corresponding column (of course always from

below the fully pivoted rows).

Here is an example. Suppose we have the following form of the matrix [A|b] as an inter-

mediate step: 

1 ∗ ∗ ∗ ∗ . . . ∗
∣∣∣ ∗

0 0 1 ∗ ∗ . . . ∗
∣∣∣ ∗

0 0 0 p1 ∗ . . . ∗
∣∣∣ ∗

0 0 0 p2 ∗ . . . ∗
∣∣∣ ∗

...
...

...
...

...
...

∣∣∣ ...

0 0 0 pm ∗ . . . ∗
∣∣∣ ∗


In the original Gauss elimination we choose p1 as the next pivot if it is nonzero and we swapped

rows only if p1 = 0. In the Gaussian elimination with partial pivoting we bring the row

with the biggest pi in absolutely value into the pivoting position, i.e. if |pi| = maxj=1,2,...m |pj|,

then we swap the row of p1 with the row of pi and use pi as a pivot.

This simple idea results in a dramatic improvement in the stability of the Gaussian elimi-

nation. Later we will learn better but more complicated methods to replace Gaussian elimi-

nation. But whenever Gaussian elimination is used in applications, its stability should always

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 22

be improved at least by this very simple “trick” of partial pivoting.

2.3 LU factorization

In order to understand better why partial pivoting worked so well and to develop further

improvements, we need a deeper insight into Gaussian elimination.

For simplicity of the discussion we assume that A is a regular square matrix. All concepts

have analogues for the general case, but we wish only to highlight the basic idea.

Furthermore, we assume that during the Gaussian elimination no row exchange was needed,

i.e. after pivoting the (k − 1)-th column, the element akk is not zero, hence it can be used

as a pivot. This can always be achieved by rearranging the rows of the matrix in advance.

[In parenthesis: of course it is hard to see whether rearranging is necessary without actually

doing the elimination. In fact you never have to swap rows during the elimination of a square

matrix A if and only if all the upper-left square submatrices of A are regular. (PROVE IT(*))]

Finally, we will not insist on ones in the pivot position. Recall that there are two equivalent

conventions during Gauss elimination: either one always divides each row by the pivot or not.

Here we use the second convention, which is used by [D].

Suppose we are at the following stage of the elimination (for simplicity we omitted the

augmented b part) 

∗ ∗ ∗ ∗ ∗ . . . ∗
0 ∗ ∗ ∗ ∗ . . . ∗
0 0 p33 ∗ ∗ . . . ∗
0 0 0 ∗ ∗ . . . ∗
0 0 0 ∗ ∗ . . . ∗
0 0 p63 ∗ ∗ . . . ∗
0 0 p73 ∗ ∗ . . . ∗
...

...
...

...
...

...


and we wish to eliminate p63 by substracting p63

p33
-times the third row from the sixth. This

means that the above matrix has the be multiplied from the left by the following very simple

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 23

matrix (CHECK(*)!)

L63

(
−
p63

p33

)
=



1
1

1
1

1
−p63

p33
1

1
. . .


where all other elements are zero. This is a lower triangular matrix with ones in the diagonal

and only one element (in the sixth row, third column) is nonzero, namely −p63

p33
. In general,

let

Lij(z) :=



1
1

. . .

1
. . .

z 1
. . .

1


(2.1)

where the nonzero element z stands in the i-th row and j-th column (j < i).

From the example above it is clear that Gaussian elimination (without row swapping) actu-

ally consists of multiplications from the left by matrices of the form Lij(z) with appropriately

chosen z.

Definition 2.1 An n×n matrix L is called lower triangular if all entries above the diagonal

are zero. L is called unit lower triangular if, in addition, the diagonal elements are all ones.

Similarly we define the upper triangular and unit upper triangular matrices.

It is easy to check (CHECK(*)) that the product of two lower triangular matrices is lower

triangular and the product of two unit lower triangular matrices is again unit lower triangular.

Similarly for upper triangular matrices.

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 24

Finally, the unit lower triangular matrices are invertible (WHY(*)?) and in particular

Lij(z)Lij(−z) = I (2.2)

(CHECK (*))

From all these information we have

Theorem 2.2 (LU factorization) Let A be an n × n regular matrix such that all upper-

left submatrices are regular (determinant nonzero). Then there exist a unit lower triangular

matrix L and an upper triangular matrix U such that

A = LU

This factorization is unique.

(Similar theorem is true for nonsingular or rectangular matrices, but then permutation

matrices must be allowed for row-swapping and the formulation of the uniqueness statement

requires more care.)

Proof: We have all ingredients. The conditions imply that there is no row exchange in the

Gauss elimination. After completing the Gauss elimination, we arrive at an upper triangular

matrix A, i.e.

Ln,n−1Ln,n−2Ln−1,n−2 . . . Ln2 . . . L42L32Ln1 . . . L31L21A = U

for appropriately chosen elementary unit lower triangular matrices of the form (2.1). After

inverting them and using that their inverses and their products are also unit lower triangular

matrices, we get

A = LU

with L = L−1
21 L

−1
31 . . . L

−1
n1L

−1
32 L

−1
42 . . . L

−1
n2 . . . L

−1
n−1,n−2L

−1
n,n−2L

−1
n,n−1

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 25

The uniqueness follows easily: if A = L1U1 = L2U2 are two different decompositions, then

U1 = LU2 with L = L−1
1 L2. Since A was regular, all the diagonal entries of U2 are nonzero

(WHY(*)?). Then CHECK(*) that LU2 can be upper triangular only if L is the identity

(otherwise LU2 has a nonzero element below the diagonal). Therefore L1 = L2, and then

U1 = U2. 2.

Problem 2.3 Find the LU factorization of A =

 1 1 −2
1 3 −1
1 5 1


SOLUTION: This is the same problem as the Gaussian elimination, just record the steps

by recording the elementary L matrices of the form (2.1). Clearly 1 0 0
−1 1 0
0 0 1


 1 1 −2

1 3 −1
1 5 1

 =

 1 1 −2
0 2 1
1 5 1


which is exactly the first step in the elimination: subtracting the first row from the second.

The next step is  1 0 0
0 1 0
−1 0 1


 1 1 −2

0 2 1
1 5 1

 =

 1 1 −2
0 2 1
0 4 3


Notice that you could have done the two steps together, i.e. multiplication by one lower

triangular matrix can eliminate all elements below the pivot in the first row 1 0 0
−1 1 0
−1 0 1


 1 1 −2

1 3 −1
1 5 1

 =

 1 1 −2
0 2 1
0 4 3


Next we use  1 0 0

0 1 0
0 −2 1


 1 1 −2

0 2 1
0 4 3

 =

 1 1 −2
0 2 1
0 0 1



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 26

Altogether  1 0 0
0 1 0
0 −2 1


 1 0 0
−1 1 0
−1 0 1


 1 1 −2

1 3 −1
1 5 1

 =

 1 1 −2
0 2 1
0 0 1


Now we invert the lower triangular matrices (be careful with the order!) 1 1 −2

1 3 −1
1 5 1

 =

 1 0 0
1 1 0
1 0 1


 1 0 0

0 1 0
0 2 1


 1 1 −2

0 2 1
0 0 1


i.e.

A =

 1 1 −2
1 3 −1
1 5 1

 =

 1 0 0
1 1 0
1 2 1


 1 1 −2

0 2 1
0 0 1

 = LU

This finishes the LU-decomposition of A.

WARNING: Notice that the inverse of a unit lower triangular matrix with only one nonzero

column (apart from the diagonal) can be taken just by reversing the sign of the offdiagonal

elements, i.e. not just (2.2) is true, but also
1 0 0 . . .
a 1 0 . . .
b 0 1 . . .
c 0 0 . . .
...

...
...

. . .




1 0 0 . . .
−a 1 0 . . .
−b 0 1 . . .
−c 0 0 . . .
...

...
...

. . .

 = I

(CHECK(*)). But the inverse of a full unit lower triangular matrix cannot be taken just by

changing the sign:  1 0 0
a 1 0
b c 1


 1 0 0
−a 1 0
−b −c 1

 6= I

2.4 Gaussian elimination revisited

Once you have an LU decomposition, you can solve Ax = b. What Gaussian elimination

actually does is that it inverts L, so that from Ax = LUx = b we have Ux = L−1b, then

backsolving actually finds x. This second step is much easier, since now U is upper triangular.

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 27

In other words, we split the problem Ax = LUx = b into two parts. First we solve

Ly = b

then we solve

Ux = y

Now we can see what went wrong in the example in Section 2.1. We started with a well

conditioned problem Ax = b with cond(A) ≈ 2.61. But the elimination actually splits it

into two easier problems, which happen to be ill-conditioned. To see that, compute the LU

decomposition of that example to get

A =
(

10−4 1
1 1

)
=
(

1 0
10000 1

)(
10−4 1

0 −9999

)
= LU

In order to compute the condition number of L and U , we need to compute the eigenvalues

of LLt and UU t (see Theorem 1.3). We get

λ1(LL
t) ≈ 108 λ2(LL

t) ≈ 10−8

hence ‖L‖ ≈ 104 and ‖L−1‖ ≈ 104, so cond(L) ≈ 108. Similarly we can compute

λ1(UU
t) ≈ 108 λ2(UU

t) ≈ 10−8

hence ‖U‖ ≈ 104 and ‖U−1‖ ≈ 104, so cond(U) ≈ 108.

So the Gaussian elimination in fact turned a well conditioned problem into two very ill-

conditinioned ones.

Now let us see how the partial pivoting (row swap) helps. Then instead of A, we actually

factorize

A′ =
(

1 1
10−4 1

)
=
(

1 0
−10−4 1

)(
1 1
0 1 + 10−4

)
= L′U ′

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 28

and we easily compute that

cond(L′) ≈ 1 cond(U ′) ≈ 2.61

i.e. we split the problem into two very well conditioned problems. In fact we essentially did

not lose anything compared to the original problem, since cond(A) ≈ 2.61 as well.

The situation is not always as good as here. First we remark that with any factorization

one loses accuracy, since

cond(A) = cond(LU) ≤ cond(L)cond(U)

(PROVE IT(*)). This means that the true error amplification cond(A), which is inherently

present in the problem, is smaller (at most equal) than the successive error amplification when

we solve Ly = b and Ux = y separately (notice the the output of the first problem is to be

put into the input of the second, so the error amplifications really get multiplied, in the worst

case).

Even with partial pivoting in general we have strict inequality. Consider the example

A =

 1 1 −2
1 3 −1
1 5 1

 =

 1 0 0
1 1 0
1 2 1


 1 1 −2

0 2 1
0 0 1

 = LU

worked out above. Here

cond(A) = 84, cond(L) = 16, cond(U ′) = 16

i.e. the error amplification is 256 in the algorithm, instead of the maximal error amplification

84 of the original problem.

Notice that there was no partial pivoting, since in the last step we actually used 2 as a

pivot instead of swapping the second and third rows (see Problem 2.3).

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 29

Consider now

A′ =

 1 1 −2
1 5 1
1 3 −1


i.e., where we already swapped the two rows. It is easy to see that in each step of the

elimination the entry on the diagonal is the biggest possible pivot, hence this is really the

same as a Gaussian elimination with partial pivoting for A.

Compute the LU-decomposition

A′ =

 1 1 −2
1 5 1
1 3 −1

 =

 1 0 0
1 1 0
1 0.5 1


 1 1 −2

0 4 3
0 0 −0.5

 = L′U ′

Now

cond(A′) = 84, cond(L′) = 5, cond(U ′) = 47.25

hence error amplification of second method is 236, in contrast to 84, which is the error ampli-

fication of the posed problem.

We can see that partial pivoting helped a bit (we have 236 instead of 256), but not too

much. The effect is not so spectacular as in the example of Section 2.1. However, since partial

pivoting is very easy to implement, it is always recommended to use it.

