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3 QR factorization revisited

Now we can explain why A = QR factorization is much better when using it to solve Ax = b

than the A = LU factorization obtained even with partial pivoting. Again, we focus on the

case of a square matrix, however everything remains true for the general case.

As before, the QR-factorization really splits the problem Ax = b into two subproblems:

Qy = b and Rx = y

both of them are easily solvable, since y = Qtb and R is upper triangular.

Since Q is orthogonal, ‖Q‖ = 1 and ‖Q−1‖ = ‖Qt‖ = 1, i.e.

cond(Q) = 1 for orthogonal matrices

Since cond(A) ≥ 1 for any matrix, we see that the orthogonal transformations are the most

stable ones. In particular, if A is regular, then

‖A‖ = ‖Q‖ ‖R‖ and ‖A−1‖ = ‖R−1‖‖Qt‖ (3.1)

(PROVE IT(*)!) hence

cond(A) = cond(QR) = cond(R)

In other words the QR-factorization decouples the original problem Ax = b into two problems,

one of them (Qy = b) has no error amplification, the other one (Rx = y) has the minimal

possible error amplification allowed by the inherent error amplification of the original problem.

The moral of the story is that orthogonal transformations are stable, one should use

them whenever possible.
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3.1 Gram-Schmidt revisited

It is clear that once we have the A = QR decomposition, we do not lose more accuracy than

necessary when solving Ax = b. But what about the factorization itself? How good is our

algorithm via the Gram-Schmidt procedure?

Again, we assume that A is a square matrix and it is regular. Recall that the Gram-

Schmidt procedure is a sequence of multiplications of A from the right by upper triangular

matrices (THINK IT OVER (*)), i.e. we have

AR1R2 . . . Rn = Q,

and then, after inverting the Ri matrices, we get

A = QR

The condition number of the R matrices can be very big, especially if A has some nearly

linearly dependent columns. Of course, in this case the condition number of A is big as

well. However cond(A) = cond(R) = cond(R1R2 . . . Rn) is usually still much smaller than

the product of the individual condition numbers cond(R1)cond(R2) . . .. In general it is not

“healthy” to perform successive multiplication with ill-conditioned matrices.

The situation is even worse if A is singular or rectangular (which is the general case).

Recall that in the original QR-factorization with Gram-Schmidt there was a step when the

algorithm had to decide whether the new column is linearly independent from the previous

ones or not. The answer to this question is very sensitive to any rounding error.

Recalling the “moral of the story” of the previous section, one should try to use orthogonal

transformations. In other words, instead of multiplying A from the right by many unstable

upper triangular matrices to bring it into an orthogonal form, we should try to multiply it



LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 32

from the left by a sequence of orthogonal matrices to bring it into an upper triangular form.

I.e. we are looking for orthogonal matrices Q1, Q2, . . . such that

QnQn−1 . . . Q2Q1A = R

be an upper triangular matrix. Then we can invert all these orthogonal matrices to get

A = QR. The point is that we invert and successively multiply with stable orthogonal

matrices, the rounding errors will not get amplified.

There are two common methods to do this: Householder reflections and Givens rotations.

We give a short outline of them.

3.2 Householder reflection

Householder reflection is a matrix of the form H = I − 2uut where ‖u‖ = 1. It is the

generalization of the reflection onto the plane with normal vector u in Rn. It is easy to check

(CHECK(*)) that H = H t and HH t = H tH = I, i.e. it is a symmetric orthogonal matrix.

Given a vector x 6= 0, it is easy to find a Householder reflection H = I − 2uut to zero out

all but the first entry of x, i.e.

Hx = x− 2(ut · x)u =


c
0
0
...

 = ce1.

Since H is orthogonal, |c| = ‖Hx‖ = ‖x‖. Write

u =
1

2ut · x
(x− ce1);

i.e. u must be parallel to the vector ũ = x± ‖x‖e1 hence

u =
x± ‖x‖e1∥∥∥x± ‖x‖e1

∥∥∥
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One can show that either choice of sign yields a u satisfying Hx = ce1 as long as ũ 6= 0. We

will use ũ = x + sign(x1)‖x‖e1 so that there is no cancellation in the first component of ũ.

In summary, we get

ũ :=


x1 + sign(x1)‖x‖

x2
...
xn

 with u =
ũ

‖ũ‖

The corresponding Householder reflection is

H(x) = I − 2uut = I −
2ũũt

‖ũ‖2

and certainly it is enough to store only the vector u (or ũ) instead of the full Householder

matrix H(x). Whenever we have to multiply by H(x), it is always easier to compute the

result from the u vector.

3.3 QR factorization with Householder reflection

The idea is similar to the Gauss elimination in the LU-factorization language. Given an n×m

matrix A (could be rectangular as well), we bring it into an upper triangular form (R) by

multiplying it from the left by appropriately chosen Householder matrices. We can assume

that none of the columns of A is fully zero (such a column just corresponds to a fully zero

column in R, hence it can be removed before we start the algorithm and then can be put back

at the end).

In the first step we eliminate all but the top entry in the first column of A. We can do it

by one single Householder matrix, namely by H(a1) if a1 is the first column of A. The result

is

A1 = H(a1)A =


∗ ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
...

...
...

...
0 ∗ ∗ . . . ∗
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where ∗ denotes a generic (usually nonzero) entry. Let H1 = H(a1) for brevity.

Next, we look at the second column of the matrix A1 = H(a1)A. Cut off the first entry

of the second column (since we do not want to change the first row any more), i.e. consider

the vector ã2 of size (n − 1) formed from the underlined elements. If this vector is zero, or

its only nonzero element is on the top, then already the second column is in upper triangular

form, so we can proceed to the next column.

If this cutoff vector ã2 has nonzero elements below the top entry, then we use a House-

holder reflection H(ã2) in the space of “cutoff” vectors. In the original space this means a

multiplication by the matrix

H2 =



1

∣∣∣∣∣ 0 0 . . . 0

0

∣∣∣∣∣
...

∣∣∣∣∣ H(ã2)

0

∣∣∣∣∣


The result is

A2 = H2A1 =



∗ ∗ ∗ ∗ . . . ∗
0 ∗ ∗ ∗ . . . ∗
0 0 ∗ ∗ . . . ∗
0 0 ∗ ∗ . . . ∗
...

...
...

...
...

0 0 ∗ ∗ . . . ∗


In the next step we consider the next column of A2 which has nonzero elements below the

third row. Again, cutoff the top two entries of this vector and consider the vector ã3 of size

(n−2) (underlined elements in A2). We can find a Householder reflection H(ã3) in Rn−2, and
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if we multiply A2 from the left with

H3 =



1 0
∣∣∣ 0 . . . 0

0 1
∣∣∣ 0 . . . 0

0 0

∣∣∣∣∣
...

...

∣∣∣∣∣ H(ã2)

0 0

∣∣∣∣∣


then the result is

A3 = H3A2 =



∗ ∗ ∗ ∗ . . . ∗
0 ∗ ∗ ∗ . . . ∗
0 0 ∗ ∗ . . . ∗
0 0 0 ∗ . . . ∗
...

...
...

...
...

0 0 0 ∗ . . . ∗


After at most (m − 1)-steps, we clearly arrive at a upper triangular matrix R, hence we

have

Hm−1Hm−2 . . .H2H1A = R

It is clear that all Hi matrices are orthogonal (they are Householder matrices on a subspace

and identity on the complement of that subspace), i.e.

A = QR

with

Q = H1H2 . . .Hm−2Hm−1

(recall that H−1
i = H t

i = Hi)

Notice that we always multiply by orthogonal matrices, which is a stable operation since

cond(Hi) = 1.
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Problem 3.1 Find the QR factorization of A =

 1 2 3
0 3 2
2 0 1

 with Householder reflections.

SOLUTION: The first column vector is a1 =

 1
0
2

. The corresponding Householder vector

is

ũ =

 1 +
√

5
0
2


with norm square ‖ũ‖2 = 10 + 2

√
5, hence

H1 = H(a1) = I −
2ũũt

10 + 2
√

5
=

−
1√
5

0 − 2√
5

0 1 0
− 2√

5
0 1√

5


and

A1 = H1A =

−
√

5 − 2√
5
−
√

5
0 3 2
0 − 4√

5
−
√

5

 =

−2.236 −0.894 −2.236
0 3 2
0 −1.788 −2.236


The next cutoff column vector is

ã2 =

(
3
− 4√

5

)

its norm is ‖ã2‖ =
√

61
5

and the corresponding Householder vector is

ũ =

(
3 +

√
61
5

− 4√
5

)
=
(

6.492
1.788

)

Hence its norm square is ‖ũ‖2 = 45.346, so

H(ã2) = I −
2ũũt

45.346
=
(
−0.859 0.512
0.512 0.859

)
From this we form the corresponding 3× 3 Householder matrix

H2 =

 1 0 0
0 −0.859 0.512
0 0.512 0.859
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and

A2 = H2A1 =

−2.236 −0.894 −2.236
0 −3.492 −2.862
0 0 −0.896


This is the R-matrix in the QR-decomposition. To obtain Q we compute

Q := H1H2 =

−.447 −.458 −.768
0 −.859 .512

−.894 .229 .384


Hence

A =

 1 2 3
0 3 2
2 0 1

 =

−.447 −.458 −.768
0 −.859 .512

−.894 .229 .384


−2.236 −0.894 −2.236

0 −3.492 −2.862
0 0 −0.896


is the QR decomposition. If we insist on positive diagonal elements in R, then we have to

multiply both matrices by −I:

A =

 1 2 3
0 3 2
2 0 1

 =

 .447 .458 .768
0 .859 −.512
.894 −.229 −.384


 2.236 0.894 2.236

0 3.492 2.862
0 0 0.896


3.4 Givens rotations

The other possible class of orthogonal transformations which we could use for a stable QR-

decomposition is the rotations. Recall that the matrix(
cos θ − sin θ
sin θ cos θ

)

rotates any vector in the plane counterclockwise by θ. The basic idea is that by an appro-

priately chosen θ we can always rotate a given vector into a vector whose second entry is

zero: (
cos θ − sin θ
sin θ cos θ

)(
x
y

)
=
(√

x2 + y2

0

)
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if

cos θ =
x

√
x2 + y2

sin θ =
−y

√
x2 + y2

In fact it is not necessary to compute the angle θ itself, we always use only its sine and cosine.

We define rotations in Rn which rotate counterclockwise by θ in a specified coordinate

plane by the following n× n matrix

R(i, j, θ) =



1
1

. . .

cos θ − sin θ
. . .

sin θ cos θ
. . .

1
1


where the trigonometric functions are in the i-th and j-th columns and all other entries are

zero. These are called Givens rotations (sometimes Jacobi rotations). It is clear that

R(i, j, θ) is an orthogonal matrix (CHECK(*)).

3.5 QR factorization with Givens rotations

The key idea is that multiplication of a matrix A by R(i, j, θ) makes its aji offdiagonal element

zero if θ is chosen appropriately, namely with

cos θ =
aii√

a2
ii + a2

ji

sin θ =
−aji√
a2
ii + a2

ji

(3.2)

(CHECK(*))

It seems that one can eliminate all offdiagonal nonzero element by a sequence of Givens

rotations. But notice that the zero elements may become nonzero again as a result of further

rotations. However, if done in a proper order, then at least one can eliminate all nonzero

elements below the diagonal. One can follow the same order as in the Gaussian elimination.
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Given a matrix A, start with the first column. Take the first nonzero element in the first

column below the diagonal. Say, it is in the k-th row. Eliminate it by left multiplication by

R(1, k, θ), where θ is chosen appropriately. Then go to the next nonzero element in the first

column, eliminate it etc.

Once the first column has only zeros below the diagonal, go to the second column, and

start eliminating below the diagonal with matrices R(2, k, θ), k ≥ 3. The key point is that

the zeros in the first column remain zeros after these multiplications (notice that R(i, j, θ)

changes only the i-th and j-th columns and rows, hence R(2, k, θ), k ≥ 3 does not touch the

first column). Then proceed to the third column etc.

Finally you get an upper triangular matrix as a result of many multiplications by Givens

matrices from the left, i.e.

GNGN−1 . . . G2G1A = R

The maximal number of Givens matrices is N = (n− 1)(n− 2)/2 for an n× n square matrix

A. But then we have the QR-factorization since we can invert all Givens matrices to get

A = QR

with

Q = Gt
1G

t
2 . . . G

t
N

To see the structure, we show the steps for a 4× 3 general matrix, whose generic elements

are denoted by ∗:

We start with

A =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


and first eliminate the underlined element (if not zero already). For that we use an appropriate
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R(1, 2, θ) matrix:

G1 =


c −s
s c

1
1


to get

A1 = G1A =


c −s
s c

1
1



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 =


∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


Here we abbreviated sin and cos by s, c. The choice is, of course

c =
a11√

a2
11 + a2

21

s =
−a21√
a2

11 + a2
21

Next we eliminate again the underlined element in A1 with a new rotation matrix G2 =

R(1, 3, θ′), with an appropriate (new) θ:

A2 := G2A1 =


c′ −s′

1
s′ c′

1



∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 =


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
∗ ∗ ∗


Finally we eliminate the last (underlined) entry of the first column by a matrix G3 =

R(1, 4, θ′′):

A3 = G3A2 =


c′′ −s′′

1
1

s′′ c′′



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
∗ ∗ ∗

 =


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗


and we finished with the first column.

Now we continue with the second column by eliminating again the underlined element in

A3 by a matrix G4 = R(2, 3, θ̃)

A4 = G4A3 =


1

c̃ −s̃
s̃ c̃

1



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 ∗ ∗
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Finally we eliminate the last nonzero element under the diagonal in A4 by a matrix G5 =

R(2, 4, θ̂)

A5 = G5A4 =


1

ĉ −ŝ
1

ŝ ĉ



∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 ∗ ∗

 =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗


This last matrix is upper triangular, this will be the R matrix of the factorization.

Summarizing, we have

G5G4G3G2G1A = R

hence A = QR with

Q = Gt
1G

t
2G

t
3G

t
4G

t
5

Problem 3.2 Find the QR factorization of A =

 1 2 0
1 1 1
2 1 0

 with Givens rotations.

SOLUTION: First we aim to kill a21 = 1. Since a11 = 1, the corresponding “cosine” and

“sine” are

c =
1

√
12 + 12

=
1
√

2
= .707 s =

−1
√

12 + 12
= −

1
√

2
= −.707

and the first rotation matrix is

G1 =

 .707 .707 0
−.707 .707 0

0 0 1


and

A1 = G1A =

 .707 .707 0
−.707 .707 0

0 0 1


 1 2 0

1 1 1
2 1 0

 =

 1.41 2.12 .707
0 −.707 .707
2 1 0


Next we kill the 2 in the last entry of the first column. The corresponding “cosine” and

“sine” are

c =
1.41

√
1.412 + 22

= .577 s =
−2

√
1.412 + 22

= −.816
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and the second rotation matrix is

G2 =

 .577 0 .816
0 1 0

−.816 0 .577


and

A2 = G2A1 =

 2.44 2.03 .407
0 −.707 .707
0 −1.15 −.576


Finally we kill the −1.15 with

c :=
−.707√

(−.707)2 + (−1.15)2
= −.523 s :=

1.15√
(−.707)2 + (−1.15)2

= .851

hence

G3 =

 1 0 0
0 −.523 −.851
0 .851 −.523


and

A3 = G3A2 =

 2.44 2.03 .408
0 1.35 1.21
0 0 .903


This is the R matrix in the QR-decomposition of A.

Finally we collect the Q matrix, we have G3G2G1A = R, i.e. A = QR with

Q = Gt
1G

t
2G

t
3 =

 .707 −.707 0
.707 .707 0

0 0 1


 .577 0 −.816

0 1 0
.816 0 .577


 1 0 0

0 −.523 .851
0 −.851 −.523



=

 .408 .86 −.301
.408 .123 .904
.816 −.492 −.301


Notice that we needed two Givens matrices (in general (n − 1)) just to complete the

elimination of the first column. The Householder reflection did it in one step. However,

computing the Householder matrix is more complicated. More importantly, multiplication of
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a matrix A by a Householder matrix, changes all its entries, so we really have to compute

n2 new entries (in case of square matrix). Givens rotations leave intact all but two rows and

columns. So eventually Givens rotations are not much worse, in fact one can easily check that

it requires roughly twice as many elementary operations as Householder.

EXERCISE: Compute the number of elementary operations (addition, multiplication, di-

vision, square root) needed to QR-factorize a general n ×m matrix A with the Householder

method and with the Givens method.

It is interesting to compare how these two algorithms perform in reality. This can be an

interesting computer project. A computer test run on randomly generated matrices reveals

that

(i) Householder is faster, especially for larger matrices, but

(ii) Givens is slightly more accurate.

The reason is that Householder is a “greedier” algorithm: it tries to zero more elements at

the same time. Hence it is faster, but “lousier”. Givens is a slow but more accurate algorithm.

However, the error is in fact almost negligible in both cases.

Here are the results of a program by Nolan Leaky. It tests 100 randomly generated matrix

(entries are independent random numbers between −1 and 1) for Householder and Givens:

Householder method on 5 by 5 matrix

time: 20.197513ms

max error: 0.000000774860382

avg error: 0.000000297142536

Givens method on 5 by 5 matrix

time: 30.437694ms
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max error: 0.000000417232513

avg error: 0.000000139699955

Householder method on 7 by 7 matrix

time: 52.122372ms

max error: 0.000000655651093

avg error: 0.000000336978791

Givens method on 7 by 7 matrix

time: 128.836702ms

max error: 0.000000298023224

avg error: 0.000000183248035


