
LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 60

5 Numerical computation of eigenvalues

The second basic problem of linear algebra is to compute the eigenvalues and eigenvectors of

a square matrix. In other words, to diagonalize a square matrix.

In theory we know what to do. We have to compute the characteristic polynomial p(λ),

find the roots λi, then for each i we have the equation (A − λi)x = 0 for the eigenvectors.

However, this procedure is not satisfactory.

Newton’s method give a very fast way to compute roots of polynomials p(λ) (it can easily

be extended to complex roots). But remember, that Newton’s method usually works very

well once you are reasonably close to the root, but it may diverge if you start far away. Still

you need some ad hoc method to get “close” to the root. After we found one root λ1, we can

certainly factor out (λ−λ1) from the polynomial p(λ), but this requires a polynomial division,

which could be quite unstable (remember, division is dangerous). We get a polynomial of

smaller degree, but then again we need some ad hoc method to get close to the next root

before we can run Newton’s method again. And even if we have found all eigenvalues, we still

have to solve n different linear equations. We know how to do it in a reasonable way, but

still the procedure is long. It would be nice to solve the full diagonalization problem at once.

Moreover, we also have to care about the stability of the method, as the eigenvalue problem

can be quite ill-conditioned (see an example below), so we do not want to make it much worse

by an unstable algorithm.

We also remark, that the problem of finding eigenvalues cannot be “easier” than finding

roots of a given polynomial (CONSTRUCT(*) a matrix with a given polynomial p(λ) =

λn + an−1λ
n−1 + . . . as its characteristic polynomial). We know that these roots in general

cannot be found with finitely many elementary operations if the degree of the polynomial is

larger than four. Hence we cannot hope for direct methods in case of the eigenvalue problem.

All algorithms will be iterative.

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 61

We discuss three methods. The power method and the QR iteration will find only the

eigenvalues but for general matrices. For the eigenvectors we still have to solve the equations

(A − λi)x = 0 one by one. The Jacobi iteration will diagonalize a square matrix with one

single (but not very fast) algorithm.

We remark that one should not underestimate the importance of the algorithms aiming

only at the eigenvalues. One could think that there should be a simpler way to solve a

characteristic equation than playing with the matrix. From theoretical point of view it is true

that reducing the eigenvalue problem to a polynomial equation is a simplifying step (eventually

a polynomial of one variable looks “simpler” than an n×n matrix). From numerical point of

view sometimes it could be opposite. In fact matrix eigenvalue algorithms are actually used

to find roots of given polynomials. In this case one is given a polynomial whose zeros are to

be found and one constructs a matrix such that the characteristic polynomial be the given

polynomial. Then one runs one of these algorithms to find the eigenvalues of the given matrix,

which will give the solution to the original problem as well.

We close this section by an example showing that the eigenvalue problem can be ill-

conditioned.

EXAMPLE. Consider the n× n matrix

A =

0 ε
1 0

1 0
1 0

1 0
.

1 0

where ε is a tiny number (all other entries are zero). The characteristic polynomial of A is

p(λ) = λn − ε

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 62

(CHECK?(*)). Clearly all eigenvalues are 0 if ε = 0. However for ε 6= 0 there are n complex

eigenvalues, the n-th roots of unity. Even if we focus on the real eigenvalue ε1/n, it is clear that

the problem is very ill-conditioned. Let n = 40 and choose ε = 10−40 which is an extremely

tiny relative error of order 10−40/1 = 10−40 (you have to compare it with other entries of the

matrix). However, one of the eigenvalue is λ = 10−1 = 0.1, which is at a distance 10−1 from

the “unperturbed” eigenvalue 0. Hence the change in the eigenvalues is equal to the change

in the perturbation parameter ε multiplied by 1039!!

There is another disquieting aspect of this phenomenon. The number ε = 10−40 is auto-

matically replaced by 0 in the computer, and this rounding introduces an error of order 10−1

in the result.

Fortunately the eigenvalue problem is not so ill-conditioned for “most” matrices, this

example was as particularly nasty one. However, it shows that we should aim at stable

algorithms, which at least do not make “bad things much worse”, since the problem itself can

be quite “bad”.

5.1 Power method for eigenvalues

This method is extremely simple. Let A be a square matrix. Pick any vector u0 and start

successively multiplying it with A. We claim, that unless you are extremely unlucky with the

choice of u0, we easily find the eigenvalue of largest modulus.

Theorem 5.1 Suppose that the square matrix A has one eigenvalue λ1 which is greater in

absolute value than all other eigenvalues, and let un+1 = Aun. Then for randomly chosen

nonzero vectors u0 and w we have

lim
n→∞

wt · un+1

wt · un
= λ1.

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 63

“almost surely”. Moreover, the sequence of normalized vectors ũn := un
‖un‖

converges to the

eigenvector of λ1.

REMARK: The probabilistic expression “almost surely” in the theorem can be made

mathematically precise (it means “for almost all” vectors, i.e. with the exception of vectors

lying in a smaller subspace) but we do not want to go into this detail. For the present purpose

you should take it literally.

Proof: We give a proof only for the case when A is a symmetric k by k matrix i.e.

A = V DV t, and λ1 is a simple eigenvalue. The proof for nonsymmetric diagonalizable matrices

is slightly harder, and the case of a general matrix A is moderately harder.

We can use the spectral theorem, i.e.

A =
k∑
i=1

λiviv
t
i

Clearly

An =
k∑
i=1

λni viv
t
i

and

wt · un = wt · Anu0 =
k∑
i=1

λni (wt · vi)(v
t
i · u0)

We compute

lim
n→∞

wt · un
λn1

= lim
n→∞

k∑
i=1

(λi
λ1

)n
(wt · vi)(v

t
i · u0) = (wt · v1)(vt1 · u0)

since |λ1| > |λi| for i > 1. Assume that u0 and w are not orthogonal to v1 (this is the case

that one has to exclude by choosing the vectors “randomly”). Then

lim
n→∞

wt · un+1

wt · un
= λ1

limn→∞
wt·un+1

λn+1
1

limn→∞
wt·un
λn1

= λ1
(wt · v1)(vt1 · u0)

(wt · v1)(vt1 · u0)
= λ1,

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 64

which completes the proof of the eigenvalue convergence.

To see the convergence of the normalized eigenvectors, notice that

un = Anu0 =
k∑
i=1

λni vi(v
t
i · u0)

hence ‖un‖ =
√∑k

i=1 |λi|
2n(vti · u0)2, so

ũn =
un
‖un‖

=

∑k
i=1 λ

n
i vi(v

t
i · u0)√∑k

i=1 |λi|
2n(vti · u0)2

=
(λ1(vt1 · u0)

|λ1(vt1 · u0)|

)nv1 +
∑k
i=2

(
λi
λ1

)n vti ·u0

vt1·u0
· vi√

1 +
∑k
i=2

∣∣∣ λi
λ1

∣∣∣2n (vti ·u0)2

(vt1·u0)2

and if |λ1| > |λi| for all other i, then this clearly converges to v1. 2.

This method gave only the eigenvalue of largest modulus. With a small trick, one can get

all other eigenvalues,

Theorem 5.2 Suppose that the square matrix A has an eigenvalue λp which is closer to p

than all other eigenvalues. Run the

un+1 = (A− pI)−1un

iteration with some initial vector u0. If the vectors u0 and w are chosen randomly, then

lim
n→∞

wt · un+1

wt · un
=

1

λp − p

“almost surely”. Hence λp is obtained as

λp = lim
n→∞

wt · un
wt · un+1

+ p

(if λp 6= p). Moreover, again, the normalized vectors ũn = un
‖un‖

converge to the eigenvector

belonging to λp.

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 65

Proof: Simply notice that the eigenvalues of B := (A−pI)−1 are (λ1−p)−1, (λ2−p)−1, . . .,

where λi are the eigenvalues of A (WHY?(*) Hint: this statement does NOT require A to be

symmetric, so spectral theorem cannot be used). From the condition it follows that (λp−p)−1

is the largest in modulus among them, so we can apply Theorem 5.1. The statement on the

eigenvector is straighforward from Theorem 5.1. 2.

REMARK: The power method looks very simple and elegant. However, notice it is really

powerful only for the eigenvalue largest in modulus. Applying Theorem 5.2 already requires

inverting a matrix, and more importantly it requires to know a point p “near” the eigenvalue.

Hence we run into similar difficulties when applied Newton’s iteration for finding the roots of

the characteristic polynomial. In fact there is essentially a Newton’s iteration behind Theorem

5.2.

Problem 5.3 (i) Find the eigenvalues and the normalized eigenvectors of A =
(

3 1
2 4

)
with

the standard method (characteristic polynomial)

(ii) Find the larger (in modulus) eigenvalue λ1 of A =
(

3 1
2 4

)
and the corresponding

eigenvector.

(iii) Knowing that 3 is closer to the other eigenvalue λ2 than to λ1, find it and find an

eigenvector.

SOLUTION: (i) This is standard: λ1 = 5, λ2 = 2, the corresponding eigenvectors are
(

1
2

)
and

(
1
−1

)
, i.e., after normalization they are

(
.4472
.8944

)
and

(
.707
−.707

)

(ii) We can start from any nonzero vector u0, e.g u0 =
(

1
1

)
. We can also choose w

arbitrarily, for example we choose w =
(

1
0

)
, i.e. wt ·un will test the first entry. The iteration

gives:

u1 = Au0 =
(

3 1
2 4

)(
1
1

)
=
(

4
6

)

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 66

u2 = Au1 =
(

3 1
2 4

)(
4
6

)
=
(

18
32

)
etc:

u3 =
(

86
164

)
u4 =

(
422
828

)
u5 =

(
2094
4156

)
u6 =

(
10438
20812

)
u7 =

(
52126
104124

)
. . .

Now we compute the consecutive ratios of the numbers wt · un, i.e. the first entries:

4

1
= 4

18

4
= 4.5

86

18
= 4.77

422

86
= 4.9

2094

422
= 4.96

10438

2094
= 4.984

52126

10438
= 4.993

i.e. λ1 ≈ 5 and you see that the iteration is fairly fast.

Just for curiosity, let’s see what happens if you choose w =
(

0
1

)
, i.e. you test the second

entries:
6

1
= 6

32

6
= 5.33

164

32
= 5.12

828

164
= 5.04

4156

828
= 5.02

20812

4156
= 5.007

104124

52126
= 5.003

i.e. the conclusion is the same.

To find the eigenvector, just normalize un’s

v0 =
u0

‖u0‖
=

1
√

2

(
1
1

)
=
(
.707
.707

)
v1 =

u1

‖u1‖
=

1
√

60

(
4
6

)
=
(
.55
.83

)
v2 =

(
.49
.87

)

v3 =
(
.464
.885

)
v4 =

(
.454
.89

)
v5 =

(
.45
.893

)
v6 =

(
.448
.8938

)
v7 =

(
.4476
.8942

)
etc. so this is the (approximate) normalized eigenvector corresponding to λ1 ≈ 5. Compare

it with the exact solution.

(iii) To find the smaller eigenvalue from the given information, we form the matrix

(A− 3)−1 =
(

0 1
2 1

)−1

=
(
−1/2 1/2

1 0

)

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 67

and run the same procedure as before. You can choose again u0 =
(

1
1

)
and test the first

entry. The iteration gives

u1 =
(
−1/2 1/2

1 0

)
u0 =

(
0
1

)
u2 =

(
−1/2 1/2

1 0

)
u1 =

(
1/2
0

)
u3 =

(
−.25
.5

)

u4 =
(
.37
−.25

)
u5 =

(
−.31
.37

)
u6 =

(
.343
−.312

)
u7 =

(
−.328
.343

)
u8 =

(
.335
−.328

)
u9 =

(
−.332
.335

)
The ratios of the first entries are

0

1
= 0

1/2

0
=∞

−.25

1/2
= −.5

.37

−.25
= −1.48

−.31

.37
= −.83

.343

−.31
= −1.1

−.328

.343
= −.95

.335

−.328
= −1.02

−.332

−.335
= −.99

etc. The convergence is slower, but the eigenvalue is around −1. Don’t worry if you got∞ at

some point: it usually disappears in the next step. But don’t forget that this is the eigenvalue

of (A− 3)−1, i.e. the corresponding eigenvalue of A is found from solving (λ− 3)−1 ≈ −1, i.e.

λ ≈ 2.

The normalized vectors are

v0 =
(
.707
.707

)
v1 =

(
0
1

)
v2 =

(
1
0

)
v3 =

(
−.44
.89

)
v4 =

(
.83
−.55

)

v5 =
(
−.64
.76

)
v6 =

(
.74
−.67

)
v7 =

(
−.69
.723

)
v8 =

(
.715
−.698

)
v9 =

(
−.702
.711

)
etc. Notice that literally the vectors do not converge to anything because of a sign oscillation.

This is due to the fact that we did not fix the normalization convention: even a normalized

eigenvector has an ambiguity; it can be multiplied by -1. To remove this ambiguity we can

require, for example, that we choose such normalization so that the first entry be always

positive. In that case the approximate eigenvectors are(
.707
.707

) (
0
1

) (
1
0

) (
.44
−.89

) (
.83
−.55

) (
.64
−.76

) (
.74
−.67

)

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 68

(
.69
−.723

) (
.715
−.698

) (
.702
−.711

)
and they clearly converge to the true eigenvector.

5.2 Jacobi method for eigenvalues

This method finds the spectral decomposition A = V DV t of a symmetric matrix. In one

single algorithm, it finds the eigenvalues and eigenvectors. The algorithm is stable, but quite

slow.

We have to recall the Givens rotations from Section 3.4. Remember that multiplying by

an appropriately chosen rotation R(i, j, θ) was able to zero off the aij element of A. However,

to reach the A = V DV t form, one would like to do everything “symmetrically”. I.e. we are

looking for a Givens rotation G = R(i, j, θ) such that the (i, j)-th entry of the matrix GtAG

be zero. Then, by symmetry, the (j, i)-th entry will be zero as well. Hence we have

B = GtAG =

...
...

. . . bii . . . bij . . .
...

...
. . . bji . . . bjj . . .

...
...

=

1
c s

1
1

−s c
1

...
...

. . . aii . . . aij . . .
...

...
. . . aji . . . ajj . . .

...
...

1
c −s

1
1

s c
1

and we want to make sure that bij = bji = 0. One can easily express bij = bji in terms of the

elements of A and c, s. After some computation (DO IT FOR YOURSELF(*)) you arrive at

s =

(
1

2
−

β

2
√

1 + β2

)1/2

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 69

c =

(
1

2
+

β

2
√

1 + β2

)1/2

(5.1)

with

β :=
aii − ajj

2aij

Thus by proper choice of G we can introduce a zero into any specified offdiagonal position,

while preserving the eigenvalues and the symmetry of A (CHECK(*) that A and GtAG have

the same eigenvalues!)

[REMARK: The idea is very similar to the QR-factorization with Givens matrices in

Section 3.5, but the actual Givens matrix is not the same. In Section 3.5 the goal was to

kill one element below the diagonal just by a single Givens multiplication from the left. This

requirement set the choice of the elements in the Givens matrix. In the Jacobi algorithm we

choose the Givens matrix such that after sandwiching the original matrix between the Givens

matrix and its transpose, the result has a zero at the required position. This is why the

formulas in (5.1) are different from (3.2).]

It would be nice if we could zero off all the off-diagonal elements of A in succession and

after n(n− 1)/2 transformations have a diagonal matrix which is conjugated to A.

But there must be a catch, because it is not possible to devise an algorithm which finds

the eigenvalues of a matrix exactly in a finite number of steps. The catch is that when we

zero an element of A, a previously zeroed element may become nonzero again. Every time

we knock one off-diagonal element out, others pop back up, so it might seem the algorithm is

useless. Fortunately, although the transformed matrices never become exactly diagonal, they

do make a steady progress toward that goal. This is the content of the following theorem (the

proof is easy calculation)

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 70

Theorem 5.4 Let B = GtAG be a Jacobi iteration. Then

n∑
i=1

b2
ii = 2a2

ij +
n∑
i=1

a2
ii

i.e. the sum of the squares of the diagonal elements increases by 2a2
ij.

Moreover, the sum of squares of all elements in A and B coincide. Hence the sum of

squares of the offdiagonal elements of B decreases by 2a2
ij.

This theorem says that measured the entries in an average sense the transformed matrix

B is closer to a diagonal matrix than A. Moreover, larger a2
ij means faster progress.

Now the Jacobi iteration is straighforward. Consider the offdiagonal element aij largest

in modulus. Construct the suitable G matrix given by the formulas (5.1) above. Compute

A1 = GtAG. Continue the process with the new A1 matrix; consider its largest offdiagonal

element, construct suitable Givens matrices etc. I.e. we have the iteration

A0 = A

An+1 = Gt
nAnGn

where Gn is the Givens matrix zeroing the biggest element of An. Then

lim
n→∞

An → D

a diagonal matrix. Of course we never reach it exactly, but we can run the iteration for N

steps, until it is acceptably nearly diagonal. Then we have

A ≈ QDQt

with

Q = G1G2 . . . GN

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 71

This gives the spectral decompostion of the matrix A.

It is again important to emphasize that we manipulated with orthogonal matrices, which

are stable, hence errors do not amplify. This method is very elegant and powerful, the only

problem is that it is a bit slow and it works only for symmetric matrices.

However, we point out that the singular value decomposition for a general n × k matrix

A actually was equivalent to diagonalizing the symmetric matrices AAt and AtA. Hence this

algorithm is crucial even in the numerical analysis of general matrices.

5.3 QR iteration for eigenvalues

Finally we discuss the QR algorithm which is the one most frequently used for calculation of

the set of eigenvalues of a general matrix. However it does not compute eigenvectors unless

the matrix is symmetric.

The algorithm is very simple. Given a square matrix A0 = A, we compute its QR factor-

ization (we have learned effective algorithms for that in Section 3). Then we realize that

RQ = Qt(QR)Q = QtAQ

matrix is actually conjugated to the original matrix A, hence RQ has the same set of eigen-

values as A. So we compute A1 = RQ and run the same steps again: compute the QR

factorization of A1 = Q1R1 (of course Q1 6= Q and R1 6= R since Q,R do not commute), then

compute A2 = R1Q1 and repeat.

In the general n-th step, we consider the QR-factorization

An = QnRn

of An then we let

An+1 = RnQn

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 72

It is clear that the set of eigenvalues of all the An matrices are the same.

It is not true that An converges to a diagonal matrix, in fact the upper off-diagonal matrix

elements may not converge at all. However, the sequence becomes more and more upper

triangular, i.e. the lower off-diagonal elements go to zero, and more importantly, its diagonal

elements converge to the eigenvalues. The precise theorem goes as follows, which we state

without proof:

Theorem 5.5 Suppose that the real valued square matrix A is invertible and all eigenvalues

λ1, λ2, . . . are distinct in modulus. Then

lim
n→∞

(An)ii = λi

lim
n→∞

(An)ij = 0 i > j

If you start with a symmetric matrix A, then clearly the sequence An consists of symmetric

matrices as well (WHY???). From the theorem we know that An is (almost) upper triangular,

but A is also symmetric, hence it is (almost) diagonal. We obtain

An = Qt
nQ

t
n−1 . . . Q

t
1AQ1Q2 . . . Qn = QtAQ

with the choice Q = Q1Q2 . . . Qn, i.e. A = QAnQ
t is almost the spectral decomposition of A

since An is almost diagonal.

REMARK: Notice that the QR-iteration uses only real numbers; every step of the proce-

dure you never see any genuine complex number. Hence it is unable to find complex eigen-

values. This is not in contradiction to the theorem, since for a real matrix the complex

eigenvalues come in conjugate pairs and conjugate pairs have the same modulus. (If λ1 is a

solution to p(λ) = 0 characteristic equation, then so is λ2 = λ1, its complex conjugate. To

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 73

see this, simply take the complex conjugate of the characteristic equation and use that all

coefficients are real).

There are improvements of the QR-method which finds complex eigenvalues as well, but

we do not discuss them here.

As a closing remark, let us emphasize again, that we just scratched the surface of an

enormously large and well-developed field of numerical mathematics. We just presented the

simplest versions of a few simple algorithm. They all have several theoretical improvements.

In addition, there are several computer implementations of the same algorithm, designed

for optimizing number of steps, necessary memory etc. And in addition, there are special

algorithms for special but important class of matrices (mainly sparse matrices). The moral of

the story is, however, that the theoretically most convenient algorithms might fail terribly in

applications. Special care is needed to deal with stability issues and ill-conditioned problems.

In the numerical analysis of the problems from linear algebra, the most important tool is

the orthogonal transformations, as they are stable. Hence the conclusion is: Use orthogonal

matrices, bases, transformations etc. whenever possible!!

