Practice Test

Math 2601 C2

1) Let A be the matrix representation of a linear map $T: V \longrightarrow W$, where V and W are vector spaces and,

$$
A=\left(\begin{array}{cccc}
1 & -3 & 2 & 4 \\
3 & 2 & -7 & 1 \\
0 & -3 & -3 & 1 \\
1 & -2 & 3 & -1 \\
2 & -1 & 3 & 3
\end{array}\right)
$$

i) Find $\operatorname{Ker}(A)$.
ii) Find $\operatorname{Im}(A)$.
2) Consider the following bases for $\mathcal{P}_{2}, \mathfrak{B}_{1}=\left\{1+x, 1+x^{2}, x+x^{2}\right\}$ and $\mathfrak{B}_{2}=\left\{1+x+x^{2},-x+2 x^{2}, 3+x^{2}\right\}$
i) Find a change of basis matrix from the \mathfrak{B}_{1} basis to the \mathfrak{B}_{2} basis.
ii) Find $\Psi_{\mathfrak{B}_{1}}\left(3 x^{2}-4 x+1\right)$ using matrix multiplication.
iii) Find a representation for $2\left(1+x+x^{2}\right)-3\left(-x+2 x^{2}\right)+1\left(3+x^{2}\right)$ in the \mathfrak{B}_{1} basis. Use matrices.
iv) Let $T: \mathcal{P}_{2} \longrightarrow \mathcal{P}_{2}$ be defined by,

$$
T(p(x))=\frac{\int_{0}^{x} p(t) d t}{x}
$$

Is T linear or not? Prove your assertion. If T is linear, suppose T eats vectors in the \mathfrak{B}_{1} basis and spits out vectors in the \mathfrak{B}_{2} basis, then find a product of three matrices which completely describes T.
3) Prove or disprove that each of the following maps is linear. Note, to show that a map $F: V \longrightarrow W$ is linear (where V and W are vector spaces) is to show that $F(\vec{x}+\vec{y})=F(\vec{x})+F(\vec{y})$ for all $\vec{x}, \vec{y} \in V$ and $F(\alpha \vec{x})=\alpha F(\vec{x})$ for all scalars α and all vectors $\vec{x} \in V$. If you are trying to show that a given map is not linear, then you must come up with a specific counter-example.
i) $T_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$, where $T_{1}(\vec{x})=-\vec{x}$.
ii) $T_{2}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$, where $T_{2}(\vec{x})=\pi$.
iii) $T_{3}: \mathcal{P}_{2} \longrightarrow \mathcal{P}_{4}$, where $T_{3}(p(x))=\left(x+x^{2}\right) p(x)$.
iv) $T_{4}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{6}$, where $T_{4}\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right)=\left\langle x_{1}, 0, x_{2}, 0, x_{3}, 0\right\rangle$
v) Suppose $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is any linear map. Let $T_{5}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, where $T_{5}(\vec{x})=T(\vec{x})+1$.
4) Determine whether or not the following matrices are invertible. (You do not need to find the inverse. Unless, of course, you want to. If so, go nuts!)

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 2-1 & \\
-2 & 1 & 1
\end{array}\right) \\
B=\left(\begin{array}{cccc}
27 & 347 & -69 \\
0 & -29 & 113 \\
0 & 0 & \pi
\end{array}\right) \\
C=\left(\begin{array}{cccccc}
0 & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
0 & 0 & a_{23} & a_{24} & a_{25} & a_{26} \\
0 & 0 & 0 & a_{34} & a_{35} & a_{36} \\
0 & 0 & 0 & 0 & a_{45} & a_{46} \\
0 & 0 & 0 & 0 & 0 & a_{56} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
D=\left(\begin{array}{cccc}
32 & -1 & 29 & -13 \\
1 & 0 & 0 & 0 \\
132 & 0 & 597 & -23 \\
15 & 0 & \frac{2}{23} & \frac{-1}{597}
\end{array}\right)
\end{gathered}
$$

