Practice Test

Math 2601 C2
Consider the following matrices.

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
1 & -3 & 1 \\
3 & 2 & 2 \\
0 & -3 & -3 \\
1 & -2 & 3
\end{array}\right) B=\left(\begin{array}{cccc}
1 & 2 & -1 & 1 \\
1 & 1 & 0 & -2
\end{array}\right) \\
C & =\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right) D=\left(\begin{array}{ccc}
5 & -2 & 1 \\
-2 & 5 & -1 \\
1 & -1 & 8
\end{array}\right)
\end{aligned}
$$

1) Find $Q R$ decompositions for B and D using
i) Gram-Schmidt
ii) Householder transformations
iii) Givens rotations
2) For the following three matrices find the projection onto the column space (P) and the projection onto the complement of the column space $\left(P^{\perp}\right)$.
i) A
ii) C
iii) D
3) Find least squares solutions for,
i) $A \vec{x}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$
ii) $B \vec{x}=\binom{1}{1}$
4) Compute the following matrix norms.
i) $\|C\|$
ii) $\|D\|$
5) Solve the following systems of differential equations.
i) $\overrightarrow{\mathbf{x}}^{\prime}(t)=C \overrightarrow{\mathbf{x}}(t)$, with initial condition $\overrightarrow{\mathbf{x}}(0)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
i) $\overrightarrow{\mathbf{y}}^{\prime}(t)=D \overrightarrow{\mathbf{y}}(t)$, with initial condition $\overrightarrow{\mathbf{y}}(0)=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$.
