
Name:

Test 1
Math 2601 C2

January 22, 2001

Directions : You have 50 minutes to complete all 7 problems on this exam.
There are a possible 100 points to be earned on this exam. You may use calcu-
lators if you wish. Please be sure to show all pertinent work. An answer with no
work will receive very little credit! If any portion of the exam is unclear please
come to me and I will elaborate provided I can do so without giving away the
problem.

(15 points)

1) Compute the following vector operations and sketch the geometry behind the
operations.

i) (2, 1) + (1, 2)
ii) −3(1, 1)
iii) (2, 1, 0)× (−1, 1, 0)
iv) ‖ (2, 1, 0)× (−1, 1, 0) ‖
v) proj ~e2(1, 2)
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(15 points)

2) Find the equation of a line that passes through the point P = (1,−1, 2) and
is parallel to the line r(t) = t(3,−1, 1)

Solution : To find the equation of a line all we need is a point on the line and
a vector in the direction of the line. We have the point given to us. Since the
line is parallel to r(t) = t(3,−1, 1) it must also have the same direction vector
(up to a scalar multiple). The direction vector for r(t) = t(3,−1, 1) is the vector
~d = (3,−1, 1). So, the desired line will be l(t) = (1,−1, 2) + t(3,−1, 1).
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(15 points)

3) Find the angle between the planes
P1 = {(x, y, z) | 5(x− 1)− 3(y + 2) + 2z = 0}
P2 = {(x, y, z) | x+ 3(y − 1) + 2(z + 4) = 0}

Solution : We will be looking for an angle θ so that cos θ = |~u ~N1
· ~u ~N2

| where
~u ~N1

is the unit vector in the direction of the normal vector for P1 and ~u ~N2
is

the unit vector in the direction of the normal vector for P2. Fortunately, the
equations given for the planes are written so that we may read of the normal
vectors. Indeed, ~N1 = (5,−3, 2) and ~N2 = (1, 3, 2). To find unit vectors with
these directions we need only divide each normal vector by its magnitude. That

is ~u ~N1
=

~N1

‖ ~N1‖
= (5,−3,2)√

52+(−3)2+22
= 1√

38
(5,−3, 2). Similarly we see that ~u ~N2

=

1√
14

(1, 3, 2). So, we have cos θ = |~u ~N1
· ~u ~N2

| = | 1√
38

(5,−3, 2) · 1√
14

(1, 3, 2)| =

| 1√
38

1√
14
||(5,−3, 2) · (1, 3, 2)| = 1√

532
(5 − 9 + 4) = 1√

532
(0) = 0. Thus, cos θ =

0⇒ θ = π
2 radians.
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(15 points)

4) Find the equation for the plane that passes through the points P1 = (3,−4,−1),P2 =
(3, 2, 1), and P3 = (−1, 1,−2).

Solution : Recall we only need the normal vector ~N and any point in the plane
in order to determine the equation of the plane. We have three points in the
plane, so we only need to find the normal vector. It would suffice to find two
vectors which lie in the plane. Since we could then take their cross product and
obtain the normal vector. Consider the vectors ~P1P2 = (3, 2, 1)− (3,−4,−1) =

(0, 6, 2) and ~P1P3 = (−1, 1,−2)− (3,−4,−1) = (−4, 5,−1). Both of these vec-
tors lie in the plane and so now we can compute the normal vector by taking
the cross product ~P1P2 × ~P1P3 = ~N . Indeed, we have

~N = (0, 6, 2)× (−4, 5,−1)

=

∣∣∣∣∣∣
i j k
0 6 2
−4 5 −1

∣∣∣∣∣∣ = i

∣∣∣∣6 2
5 −1

∣∣∣∣− j

∣∣∣∣ 0 2
−4 −1

∣∣∣∣+ k

∣∣∣∣ 0 6
−4 5

∣∣∣∣
= i(−6− 10)− j(0 + 8) + k(0− 30)

= −16i− 8j− 30k = (−16,−8,−30)

So, we can now fill in the equation of the plane, P = {(x, y, z) | −16(x− 3) −
8(y − (−4)) − 30(z − (−1))}. Notice this can be reduced a little to give us
P = {(x, y, z) | 4(x− 3) + 4(y+ 4) + 15(z+ 1)}. I could also have used either P2

or P3 instead of P1.
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(15 points)

5) Are the following sets of vectors linearly dependent or linearly independent?
Justify your answer.

i) {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
ii) {(α1, α2, α3), (β1, β2, β3), (γ1, γ2, γ3), (ξ1, ξ2, ξ3)}

Solution : i) We need to find constants c1, c2, and c3 so that c1(1, 1, 0) +
c2(1, 0, 1) + c3(0, 1, 1) = 0. So we have the following system of equations:
c1 + c2 = 0
c1 + c3 = 0

c2 + c3 = 0
The first equation tells us that c1 = −c2. Then

using this information, the second equation reads −c2 +c3 = 0⇒ c2 = c3. Next,
using this fact in the third equation we have c3 + c3 = 0 ⇒ 2c3 = 0 ⇒ c3 = 0.
Backsolving, we see that c1 = c2 = c3 = 0. Thus, we deduce that the three
vectors are linearly independent.

ii) Trying to use the same tricks from part i) is not the way to approach
this problem. We are forced to use a little finesse. Remember the following
definition of a basis. A set of vectors {~vi}ni=1 is a basis for a linear subspace S
of Rn provided it is a maximal linear independent set in S. That is, if you add
any new vectors, you are no longer linearly independent. With that in mind,
notice that R3 is certainly a linear subspace of itself, as pointed out in class.
Also, we know the standard basis in R3 is ~e1 = (1, 0, 0), ~e2 = (0, 1, 0), and
~e3 = (0, 0, 1). Since this is a basis it must be a maximal linearly independent
set. So, we know that dim(R3) = 3. So, there can be no linear independent
sets of vectors that contain more than three vectors. Notice, if there was a
set containing four linearly independent vectors then the collection {~e1, ~e2, ~e3}
would not be a maximal set of linear independent vectors, hence not a basis!
Certainly a contradiction of all things we have grown to know and love. I.e.,
the vectors in ii) must be linearly dependent.
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(15 points)

6) Let V and W be linear subspaces of Rn.
i) Is V ∪W a linear subspace of Rn? Justify your answer.
ii) Is V ∩W a linear subspace of Rn? Justify your answer.

Solution : i) Nope. Consider the linear subspaces V = {(x, y) | (x, y) =
t(1, 0) for some t ∈ R} and W = {(x, y) | (x, y) = t(0, 1) for some t ∈ R}. This
is a fancy way of saying the x-axis and the y-axis respectively. Now consider
the vectors ~e1 = (1, 0) and ~e2 = (0, 1). We know that ~e1 ∈ V so ~e1 ∈ V ∪W ,
likewise ~e2 ∈W ⇒ ~e2 ∈ V ∪W . So, if V ∪W is to be a linear subspace it must
be closed under addition. However, ~e1 + ~e2 = (1, 1) /∈ V ∪W . So, we conclude
that V ∪W is not a linear subspace in general.

ii) Everything works out fine in this problem. We need to show that
V ∩W is closed under addition and scalar multiplication. Let us show that it
is closed under addition first. Suppose ~x and ~y are vectors in V ∩W . Then,
by definition of intersection, we know that ~x and ~y are each in V and W . The
fact that we have assumed that V and W are linear subspaces will give us the
needed structure. Indeed, since ~x and ~y are in V we know that ~x+ ~y ∈ V since
V is a linear subspace and therefore closed under addition. Likewise, since ~x
and ~y are each in W we have ~x+ ~y ∈W . Thus we have shown ~x+ ~y ∈ V ∩W .
It remains to show that V ∩W is closed under scalar multiplication. So, let
~x ∈ V ∩W and also let α be any scalar. As before we have ~x ∈ V and ~x ∈ W .
So, since V and W are closed under scalar multiplication, α~x ∈W and α~x ∈W ,
so α~x ∈ V ∩W as desired.
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(10 points)

7) Let V be any line that passes through the origin with direction ~d. Let W be

a plane that passes through the origin with normal vector ~N .
Prove or Disprove : V �W = {~v × ~w | ~v ∈ V, ~w ∈ W} is a linear subspace of
R3.

Solution : Every good exam ought to have one challenging problem. This is
it. It’s challenging because there is a lot of potential to get sidetracked with
details that are not need to solve this problem. For example, a lot of time can be
wasted trying to imagine what this space looks like in general. Is it a line? Is it
a plane? Is it Superman? Is it all of R3? Turns out, knowing the answer to this
problem can potentially take a lot of time and it’s not really crucial to solving
the problem. All we need to do is try to show that the necessary algebraic
structure is intact. That is, show that the space is closed under addition and
scalar multiplication. Suppose that ~x, ~y ∈ V �W . Then, ~x = ~v1 × ~w1, and
~y = ~v2 × ~w2 for some ~v1, ~v2 ∈ V and ~w1, ~w2 ∈ W . We can even do a little
better than that. Since V is just a line that passes through the origin we know
that every vector in V is just some scalar multiple of ~d. That is, ~v1 = α~d and
~v2 = β~d for some α and β. So, we really have ~x = (α~d)× ~w1 and ~y = (β~d)× ~w1.
Now we just need to use the properties of cross product.

~x+ ~y = (α~d)× ~w1 + (β~d)× ~w2

= ~d× (α~w1) + ~d× (β ~w2)

= ~d× (α~w1 + β ~w2)

So, notice that ~d ∈ V and (α~w1 + β ~w2) ∈ W , thus their cross product is an
element of V �W as desired. It remains to show that V �W is closed under
scalar multiplication. Let ~x = (α~d × ~w) ∈ V �W and ξ be any scalar. Then

we have ξ~x = ξ(α~d × ~w) = (ξα~d) × ~w. Since V is a linear subspace we know

(ξα~d) ∈ V and so (ξα~d) × ~w ∈ V �W . We conclude that V �W is a linear
subspace of R3.
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