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Test 2
Math 2601 C2

February 16, 2001

Directions : You have 50 minutes to complete all 4 problems on this exam.
There are a possible 100 points to be earned on this exam; each problem is
worth 25 points. You may not use a calculator. Please be sure to show all
pertinent work. An answer with no work will receive very little credit! If any
portion of the exam is unclear please come to me and I will elaborate provided
I can do so without giving away the problem.

1) Let A be the matrix representation of a linear map T : V −→ W , where
V and W are vector spaces and,

A =


 1 −2 3 4

2 −3 4 7
−3 −4 6 8




i) Find dim(V ) and dim(W ).

ii) Find Ker(A).

iii) Find Im(A).

Solution :

i) A is a 3 × 4 matrix. So, it must eat vectors in R
4 and spit out vectors in

R
3. Thus dim(V ) = 4 and dim(W ) = 3.

ii) We only need to row reduce to find Ker(A). So,

 1 −2 3 4

2 −3 4 7
−3 −4 6 8




(R2 = R2 + (−2)R1)


 1 −2 3 4

0 1 −2 −1
−3 −4 6 8




(R3 = R3 + (3)R1)


1 −2 3 4

0 1 −2 −1
0 −10 15 20




(R3 = R3 + (10)R2)


1 −2 3 4

0 1 −2 −1
0 0 −5 10



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(R3 = −1
5
R3)


1 −2 3 4

0 1 −2 −1
0 0 1 −2




(R2 = R2 + (2)R3)


1 −2 3 4

0 1 0 −5
0 0 1 −2




(R1 = R1 + (−3)R3)


1 −2 0 10

0 1 0 −5
0 0 1 −2




(R1 = R1 + (2)R2)


1 0 0 0

0 1 0 −5
0 0 1 −2




We have shown that if A~x = ~0 then ~x =




0
5t
2t
t


. Thus Ker(A) = span







0
5
2
1







.

iii) We just need to look at the work we have done previously to determine
Im(A). We see that the first three columns of the row-reduced matrix are each
pivotal. Thus the image is spanned by the first three columns of the original

matrix. I.e. Im(A) = span





 1

2
−3


 ,


−2
−3
−4


 ,


3

4
6





.
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2) Prove or Disprove:
If T : P2 −→ P3 is the map defined by,

T (p(x)) =
[∫ x

0

p(t)dt

]
+ 1

then, T is linear.
(If you are going to prove the statement, you must use the definition of linearity.
If you are going to disprove the statement, you must come up with a counter-
example that violates the definition of linearity).

Solution : Recall the definition of linearity.

Definition : A map T : V −→ W , where V and W are vector spaces, is
linear if the following two conditions hold,

i) T (~x + ~y) = T (~x) + T (~y) for all ~x, ~y ∈ V .

ii) T (α~x) = αT (~x) for all ~x ∈ V and all scalars α.

In our case, T is a map from the vector space P2 into the vector space P3.
So, our vectors are polynomials of degree at most two.

T is not linear. The easy check is that it fails the condition T (αp(x)) =
αT (p(x)) when α = 0. Indeed, T (0p(x)) = T (0) =

∫ x

0
0dt + 1 = 0 + 1 = 1,

but 0T (p(x)) = 0
[∫ x

0 p(t)dt + 1
]

= 0. So, we have shown T (αp(x)) 6= αT (p(x))
in general and so T is not linear. You could have used the condition T (p(x) +
q(x)) = T (p(x)) + T (q(x)) to derive a contradiction as well. Take your two
favorite polynomials in P2, let’s use p(x) = 1 + x and q(x) = 1 + x2. Then
notice,

T (p(x) + q(x)) = T ((1 + x) + (1 + x2))

= T (2 + x + x2)

=
∫ x

0

2 + t + t2dt + 1

= 2x +
1
2
x2 +

1
3
x3 + 1

But,
T (p(x)) + T (q(x)) = T (1 + x) + T (1 + x2)

=
[∫ x

0

1 + tdt + 1
]

+
[∫ x

0

1 + t2dt + 1
]

=
[
x +

1
2
x2 + 1

]
+

[
x +

1
3
x3 + 1

]

= 2x +
1
2
x2 +

1
3
x3 + 2
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Notice that these two quantities are not equal, so again we deduce that T is
not linear. Some of you may be bothered that I chose specific polynolmials to
check linearity. Remember you can only do this if you are trying to provide
a counter example. Since, the definition of linearity says that these conditions
must hold for any polynomials p(x) and q(x) and all scalars α. I have shown
that the definition fails when I choose p(x) = 1 + x and q(x) = 1 + x2. Thus
the conditions don’t hold for all polynomials, which is necessary for linearity.
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3) Let M: P2 −→ P3 be defined by, M (p(x)) =
∫ x

0
p(t)dt. Let O : P3 −→ P2

be defined by, O(q(x)) = q′(x), where q′(x) denotes the usual derivative of q(x).
Let B1 and B2 be the standard bases for P2 and P3 respectively.

i) Find B2M
M
B1

and B1M
O
B2

.

ii) What is the map O◦ M?

iii) Prove your assertion in part ii).

Solution :

B2M
M
B1

=


 | | |

ΨB2(M (1)) ΨB2(M (x)) ΨB2(M (x2))
| | |




So, let’s compute the columns.

ΨB2(M (1)) = ΨB2(
∫ x

0

1dt) = ΨB2(x) =




0
1
0
0




ΨB2(M (x)) = ΨB2(
∫ x

0

tdt) = ΨB2(
1
2
x2) =




0
0
1
2
0




ΨB2(M (x2)) = ΨB2(
∫ x

0

t2dt) = ΨB2(
1
3
x3) =




0
0
0
1
3




So,

B2M
M
B1

=



0 0 0
1 0 0
0 1

2 0
0 0 1

3




Similarly,

B1M
O
B2

=


 | | | |
ΨB1(O(1)) ΨB1(O(x)) ΨB1(O(x2)) ΨB1(O(x3))

| | |




Again, we compute the columns.

ΨB1(O(1)) = ΨB1(
d

dx
1) = ΨB1(0) =


0

0
0



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ΨB1(O(x)) = ΨB1(
d

dx
x) = ΨB1(1) =


1

0
0




ΨB1(O(x2)) = ΨB1(
d

dx
x2) = ΨB1(2x) =


0

2
0




ΨB1(O(x3)) = ΨB1(
d

dx
x3) = ΨB1(3x2) =


0

0
3




So,

B2M
M
B1

=


0 1 0 0
0 0 2 0
0 0 0 3




ii) This composition is the identity map from P2 into itself.

iii) To prove this we only need to find a representation for the composition
O◦ M. This can be done via matrix multiplication. That is,

B1M
O◦M
B1

=
[
B1M

O
B2

] [
B2M

M
B1

]

=


0 1 0 0
0 0 2 0
0 0 0 3







0 0 0
1 0 0
0 1

2 0
0 0 1

3


 =


1 0 0

0 1 0
0 0 1




So, we see that the composition gives us the 3× 3 identity matrix, thus proving
our assertion.
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4) Verify that the following matrix is invertible. (Hint. There are many ways
to compute a determinent.)




1 35 24 −12 17
0 −11 17 1 1

3
0 1 0 0 0
0 52 135 0 0
0 6 −25 0 1

135




Solution : You guessed it. We will take a determinent. Notice that there
are a whole bunch of zeros in this matrix. The goal will be to expand along
a row or column that has the most zero terms in it. So, it looks like a good
place to start will be to expand along either the third row or the first column,
since they each only have one nonzero term. Then we will try to find the row
or column in the resulting submatrix which has the most zeros etc... I will first
expand along the first column. Let us begin,

det




1 35 24 −12 17
0 −11 17 1 1

3
0 1 0 0 0
0 52 135 0 0
0 6 −25 0 1

135




= 1(−1)1+1det



−11 17 1 1

3
1 0 0 0
52 135 0 0
6 −25 0 1

135




Next, expand the submatrix along the second row

= 1


1(−1)2+1det


 17 1 1

3
135 0 0
−25 0 1

135







Then, expand along the second column.

= 1
[
(−1)

[
1(−1)1+2det

(
135 0
−25 1

135

)]]

Now, we only have a 2 × 2 matrix to deal with.

= 1
[
(−1)

[
(−1)

[
(135)(

1
135

) − (0)(−25)
]]]

= 1(−1)(−1)(1) = 1

All that work for 1, sigh... Well 1 6= 0 so the matrix has full rank and is therefore
invertible.
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