Name: \qquad
Test 1
Summer 2007
MTH121 Section 01
July 3, 2007
Directions : You have 60 minutes to complete all 5 problems on this exam. There are a possible 100 points to be earned. You may not use your book, notes, or any graphing/programmable calculator. Please be sure to show all pertinent work. A correct answer with no work will receive very little credit! If any portion of the exam is unclear please come to me and I will elaborate provided I can do so without giving away the problem.

1. (10 points)

Evaluate the limit, if it exists
a) $\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x+1}$
b) $\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}$

Solution :

a)

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x+1} & =\lim _{x \rightarrow-1} \frac{(x+1)(x-3)}{x+1} \\
& =\lim _{x \rightarrow-1} x-3 \\
& =-4 .
\end{aligned}
$$

b)

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2} & =\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}\left(\frac{\sqrt{x+2}+2}{\sqrt{x+2}+2}\right) \\
& =\lim _{x \rightarrow 2} \frac{x+2-4}{(x-2)(\sqrt{x+2}+2)} \\
& =\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(\sqrt{x+2}+2)} \\
& =\lim _{x \rightarrow 2} \frac{1}{\sqrt{x+2}+2} \\
& =\frac{1}{4}
\end{aligned}
$$

2. (20 points)

Does there exist a real number x so that $\sin (x)=x^{3}-1$? If so, how do you know?
Solution : Sure there is such a number. Let $f(x)=\sin (x)-x^{3}+1$ and notice that since $f(x)$ is the sum and difference of continuous functions, it is continuous. Also observe that $f(0)=1>0$ and $f(\pi)=-\pi^{3}+1<0$. By the intermediate value theorem, there exists a number c in between 0 and π so that $f(c)=0$. But this says that $\sin (c)-c^{3}+1=0$, and so $\sin (c)=c^{3}-1$ as promised.
3. (20 points)

Sketch the graph of an example of a function f that satisfies all of the given conditions.
$\lim _{x \rightarrow 3^{+}} f(x)=4, \lim _{x \rightarrow 3^{-}} f(x)=2, \lim _{x \rightarrow-2} f(x)=2, f(3)=3$, and $f(-2)=1$.

Solution :

4. (20 points)

Find the slope of the tangent to the curve $y=2 /(x+3)$ at the point where $x=a$ using the limit definition. You must use the limit definition if you wish to receive any credit.

Solution : We did this in class right before the exam. The slope of the tangent line at the point $x=a$ is the value of the derivative at $x=a$. So, we compute.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{2}{a+h+3}-\frac{2}{a+3}}{h} & =\lim _{h \rightarrow 0} \frac{\frac{2(a+3)}{(a+h+3)(a+3)}-\frac{2(a+h+3)}{(a+h+3)(a+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2(a+3)-2(a+h+3)}{(a+h+3)(a+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2 a+6-2 a-2 h-6}{(a+h+3)(a+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-2 h}{(a+h+3)(a+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{(a+h+3)(a+3)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2}{(a+h+3)(a+3)} \\
& =\frac{-2}{(a+3)^{2}}
\end{aligned}
$$

5. (30 points)

Differentiate the function.
(a) $V(r)=\frac{4}{3} \pi r^{3}$
(b) $y=4 \pi^{2}$
(c) $g(x)=\frac{3 x-1}{2 x+1}$
(d) $f(\theta)=\frac{\sec (\theta)}{1+\sec (\theta)}$
(e) $y=\sin (x \cos (x))$
(f) $y=\sqrt{x+\sqrt{x}}$

Solution :

a)

$$
V^{\prime}(r)=3\left(\frac{4}{3}\right) \pi r^{2}=4 \pi r^{2}
$$

b)

$$
y^{\prime}=0\left(4 \pi^{2} \text { is a constant }\right)
$$

c)

$$
g^{\prime}(x)=\frac{(2 x+1)(3)-(3 x-1)(2)}{(2 x+1)^{2}}=\frac{5}{(2 x+1)^{2}}
$$

d)

$$
f^{\prime}(\theta)=\frac{(1+\sec (\theta)) \sec (\theta) \tan (\theta)-\sec (\theta)(\sec (\theta) \tan (\theta)}{(1+\sec (\theta))^{2}}=\frac{1}{(1+\sec (\theta))^{2}}
$$

e)

$$
y^{\prime}=\cos (x \cos (x))[\cos (x)-x \sin (x)]
$$

f)

$$
y^{\prime}=\frac{1}{2}\left(x+x^{1 / 2}\right)^{-1 / 2}\left(1+\frac{1}{2} x^{-1 / 2}\right)
$$

