MATH 321 Section 01

Homework 1

Below is a list of problems that I will collect Friday January 26. You should write up solutions carefully and neatly and staple your work. All problems from the homework are fair game on the exams! You are encouraged to work in groups, but you must write up your own solutions. I will be available during office hours for help.
(1) Either read the directions on your calculator or go online and find some freeware in an effort to find a computational tool to aid you in matrix arithmetic.
(2) Describe geometrically the set of solutions to the following systems of equations (treat the $a_{i j}$'s and b_{i} 's as constants). Is the solution set a point, intersection of lines, etc...
(a) $a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}$
(b) $a_{11} x_{1}=b_{1}$
(c) $\left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}=b_{2} \\ a_{31} x_{1}+a_{32} x_{2}=b_{3}\end{array}\right\}$
(d) $\left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}+a_{15} x_{5}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}+a_{25} x_{5}=b_{2} \\ a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}+a_{35} x_{5}=b_{3}\end{array}\right\}$
(3) Find the augmented matrix for each of the following systems of linear equations.
(a) $\left\{\begin{array}{l}x_{1}-2 x_{2}=1 \\ -2 x_{1}+x_{2}=4\end{array}\right\}$
(b) $\left\{\begin{array}{l}x_{1}-2 x_{2}+x_{4}=0 \\ -2 x_{2}+3 x_{3}+5 x_{1}=1 \\ x_{5}=2\end{array}\right\}$
(c) $\left\{\begin{array}{l}x_{1}=1 \\ x_{2}=2 \\ x_{3}=1\end{array}\right\}$
(4) Find a system of linear equations corresponding to the augmented matrix.
(a) $\left[\begin{array}{ccc}2 & 0 & 0 \\ 3 & -4 & 0 \\ 0 & 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cccc}3 & 0 & -2 & 5 \\ 7 & 1 & 4 & -3 \\ 0 & -2 & 1 & 7\end{array}\right]$
(c) $\left[\begin{array}{ccccc}7 & 2 & 1 & -3 & 5 \\ 1 & 2 & 4 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$
(5) Solve each of the following by reducing a matrix to reduced row-echelon form.
(a) $\left\{\begin{array}{l}2 x_{1}-3 x_{2}=-2 \\ 2 x_{1}+x_{2}=1 \\ 3 x_{1}+2 x_{2}=1\end{array}\right\}$
(b) $\left\{\begin{array}{l}3 x_{1}+2 x_{2}-x_{3}=-15 \\ 5 x_{1}+3 x_{2}+2 x_{3}=0 \\ 3 x_{1}+x_{2}+3 x_{3}=11 \\ -6 x_{1}-4 x_{2}+2 x_{3}=30\end{array}\right\}$
(c) $\left\{\begin{array}{l}4 x_{1}-8 x_{2}=12 \\ 3 x_{1}-6 x_{2}=9 \\ -2 x_{1}+2 x_{2}=1\end{array}\right\}$
(d) $\left\{\begin{array}{l}10 y-4 z+w=1 \\ x+4 y-z+w=2 \\ 3 x+2 y+z+2 w=5 \\ -2 x-8 y+2 z-2 w=-4 \\ x-6 y+3 z=1\end{array}\right\}$
(6) Reduce the following matrix to reduced row-echelon form without introducing any fractions.

$$
\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & -2 & 7 \\
3 & 4 & 5
\end{array}\right]
$$

(7) Recall from plane geometry that three points, not all lying on a straight line, determine a unique circle. It is shown in analytic geometry that a circle in the $x y$-plane has an equation of the form

$$
a x^{2}+a y^{2}+b x+c y+d=0 .
$$

Find an equation of the circle shown in the figure.

(8) Show that if $a d-b c \neq 0$, then the reduced row-echelon form of

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { is } \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(9) Consider the following matrices:

$$
\begin{array}{ll}
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] & B=\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -3 & 1 \\
1 & 1 & 1
\end{array}\right] \\
C=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 2 & 3
\end{array}\right] & D=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{array}
$$

Either compute the indicated arithmetic or explain why it is not possible.
(a) $A+B$
(b) $A+C$
(c) $3 A$
(d) $A B$
(e) $B A$
(f) $A C$
(g) $C A$
(h) $A D$
(i) $D A$
(j) $A A$
(k) $A A A$
(10) Let A be any $m \times n$ matrix. Suppose that we tried to define the reciprocal of A by replacing each entry of A with its reciprocal. That is, if $A=\left(a_{i j}\right)_{m \times n}$ then

$$
\frac{1}{A}=\left(\frac{1}{a_{i j}}\right)_{m \times n} .
$$

Is this always possible? Can you compute the reciprocal matrix for A, B, C, and D from the previous exercise without bursting into flames?

Department of Mathematics, Spring Hill College, Mobile, AL 36608
E-mail address: cmullikin@shc.edu

