MATH 321 Section 01
 Homework 2

Below is a list of problems that I will collect Friday February 2. You should write up solutions carefully and neatly and staple your work. All problems from the homework are fair game on the exams! You are encouraged to work in groups, but you must write up your own solutions. I will be available during office hours for help.
(1) Show that if A is a square matrix and r and s are integers, then

$$
A^{r} A^{s}=A^{r+s} \text { and }\left(A^{r}\right)^{s}=A^{r s}
$$

(2) Show that if A is an invertible matrix, then
(a) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
(b) A^{n} is invertible and $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}$ for $n=0,1,2, \ldots$
(c) For any nonzero scalar k, the matrix $k A$ is invertible and $(k A)^{-1}=1 / k A^{-1}$.
(3) Show that if A is an invertible matrix, then A^{T} is also invertible and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

(4) Prove that the 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if $a d-b c \neq 0$, in which case the inverse is given by the formula

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & -\frac{b}{a d-b c} \\
-\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] .
$$

(5) Let A and B be square matrices of the same size. Is $(A B)^{2}=A^{2} B^{2}$ a valid matrix identity? Justify your answer.
(6) Suppose that $d_{1} d_{2} d_{3} \neq 0$ and consider the diagonal matrix

$$
D=\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]
$$

Compute D^{-1}.
(7) Consider the matrices

$$
A=\left[\begin{array}{ccc}
3 & 4 & 1 \\
2 & -7 & -1 \\
8 & 1 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
8 & 1 & 5 \\
2 & -7 & -1 \\
3 & 4 & 1
\end{array}\right] \quad C=\left[\begin{array}{ccc}
3 & 4 & 1 \\
2 & -7 & -1 \\
2 & -7 & 3
\end{array}\right]
$$

Find elementary matrices E_{1}, E_{2}, E_{3}, and E_{4} such that
(a) $E_{1} A=B$
(b) $E_{2} B=A$
(c) $E_{3} A=C$
(d) $E_{4} C=A$
(8) Find the inverse of the given matrix if the matrix is invertible and check your answer by multiplication.
(a) $\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$
(b) $\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$
(c) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 7\end{array}\right]$
(9) Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & 4 & -1 \\
1 & 0 & 3 \\
2 & 5 & -4
\end{array}\right]
$$

Solve the equation $A \vec{x}=\vec{b}$ when \vec{b} is the matrix
(a) $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{c}3 \\ 2 \\ -2\end{array}\right]$
(c) $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
(10) Show that

$$
A=\left[\begin{array}{lllll}
0 & a & 0 & 0 & 0 \\
b & 0 & c & 0 & 0 \\
0 & d & 0 & e & 0 \\
0 & 0 & f & 0 & g \\
0 & 0 & 0 & h & 0
\end{array}\right]
$$

is not invertible for any values of the entries.
Department of Mathematics, Spring Hill College, Mobile, AL 36608
E-mail address: cmullikin@shc.edu

