MATH 321 Section 01

Homework 3

Below is a list of problems that I will collect Monday March 19. You should write up solutions carefully and neatly and staple your work. All problems from the homework are fair game on the exams! You are encouraged to work in groups, but you must write up your own solutions. I will be available during office hours for help.
(1) Find the standard matrix for the linear operator defined by the formula.
(a) $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2}, x_{1}+x_{2}\right)$.
(b) $K\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$.
(c) $E\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}+x_{3}, x_{1}+5 x_{2}, x_{3}\right)$.
(2) Let $P_{n}(\mathbb{R})$ denote the set of polynomials of degree at most n with real coefficients. Recall, the differential operator $D: P_{n}(\mathbb{R}) \longrightarrow P_{n-1}(\mathbb{R})$ is a linear transformation. Find the corresponding matrix form for D in the case $n=3$. [Hint: Represent x^{3} as $(1,0,0,0), x^{2}$ as $(0,1,0,0), x$ as $(0,0,1,0)$, and 1 as $(0,0,0,1)$.]
(3) Prove that the set $M_{m n}$ (the set of all $m \times n$ real valued matrices) is a vector space under matrix addition and scalar multiplication.
(4) Let $A \in M_{m n}$, then we define the kernel of A to be the set ker $A=\left\{\vec{x} \in \mathbb{R}^{n}: A \vec{x}=\overrightarrow{0}\right\}$. Prove that ker A is a subspace of \mathbb{R}^{n}.
(5) Suppose

$$
A=\left(\begin{array}{cccc}
1 & -1 & 3 & 1 \\
3 & -3 & 9 & 3 \\
1 & 0 & 1 & -1 \\
5 & -2 & 9 & -1
\end{array}\right)
$$

Compute ker A and describe the set geometrically.
(6) Prove the Cauchy-Schwarz inequality $|u \cdot v| \leq\|u\|\|v\|$ for all vectors in \mathbb{R}^{n}.
(7) This exercise is to illustrate the concept of eigenvalues/eigenvectors. We start with a definition.

Definition 1. Let $A \in M_{n n}$ and suppose that $A \vec{x}=\lambda \vec{x}$ for some $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{R}^{n}$. We call λ an eigenvalue for A and \vec{x} the eigenvector for A corresponding to λ.

Show that λ is an eigenvalue for A with eigenvector \vec{x} if and only if $\operatorname{det}(A-\lambda I)=0$ where I is the $n \times n$ identity matrix.
(8) Let A be the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right)
$$

Find all the eigenvalues for A as well as the corresponding eigenvectors.
(9) Let A be the diagonal matrix

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

where a and b are each positive real numbers.
(a) Compute the eigenvalues λ_{1}, λ_{2} and corresponding eigenvectors for A.
(b) Show that the image of the unit circle by A is the ellipse with major axis length $\max \left\{\lambda_{1}, \lambda_{2}\right\}$ and minor axis length $\min \left\{\lambda_{1}, \lambda_{2}\right\}$.
(10) Recall that the matrix for a rotation by an angle θ about the origin is given by the matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

(a) Show that for all $\theta \in(0, \pi)$ the matrix R_{θ} has no eigenvalues in \mathbb{R}.
(b) Explain heuristically why this is the case.
(c) Does the matrix R_{π} have any eigenvalues? What gives?

Department of Mathematics, Spring Hill College, Mobile, AL 36608
E-mail address: cmullikin@shc.edu

