MATH 321 Section 01 Homework 3

Below is a list of problems that I will collect Monday March 19. You should write up solutions carefully and neatly and *staple your work*. All problems from the homework are fair game on the exams! You are encouraged to work in groups, but you must write up your own solutions. I will be available during office hours for help.

- (1) Find the standard matrix for the linear operator defined by the formula.
 - (a) $T(x_1, x_2) = (2x_1 x_2, x_1 + x_2).$
 - (b) $K(x_1, x_2) = (x_1, x_2).$

(c) $E(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 + 5x_2, x_3).$

- (2) Let $P_n(\mathbb{R})$ denote the set of polynomials of degree at most n with real coefficients. Recall, the differential operator $D: P_n(\mathbb{R}) \longrightarrow P_{n-1}(\mathbb{R})$ is a linear transformation. Find the corresponding matrix form for D in the case n = 3. [Hint: Represent x^3 as (1, 0, 0, 0), x^2 as (0, 1, 0, 0), x as (0, 0, 1, 0), and 1 as (0, 0, 0, 1).]
- (3) Prove that the set M_{mn} (the set of all $m \times n$ real valued matrices) is a vector space under matrix addition and scalar multiplication.
- (4) Let $A \in M_{mn}$, then we define the **kernel** of A to be the set ker $A = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{0}\}$. Prove that ker A is a subspace of \mathbb{R}^n .
- (5) Suppose

$$A = \begin{pmatrix} 1 & -1 & 3 & 1 \\ 3 & -3 & 9 & 3 \\ 1 & 0 & 1 & -1 \\ 5 & -2 & 9 & -1 \end{pmatrix}.$$

Compute ker A and describe the set geometrically.

- (6) Prove the Cauchy-Schwarz inequality $|u \cdot v| \le ||u|| ||v||$ for all vectors in \mathbb{R}^n .
- (7) This exercise is to illustrate the concept of eigenvalues/eigenvectors. We start with a definition.

Definition 1. Let $A \in M_{nn}$ and suppose that $A\vec{x} = \lambda \vec{x}$ for some $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{R}^n$. We call λ an eigenvalue for A and \vec{x} the eigenvector for A corresponding to λ .

Show that λ is an eigenvalue for A with eigenvector \vec{x} if and only if det $(A - \lambda I) = 0$ where I is the $n \times n$ identity matrix.

(8) Let A be the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}.$$

Find all the eigenvalues for A as well as the corresponding eigenvectors.

(9) Let A be the diagonal matrix

$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

where a and b are each positive real numbers.

- (a) Compute the eigenvalues λ_1 , λ_2 and corresponding eigenvectors for A.
- (b) Show that the image of the unit circle by A is the ellipse with major axis length max{λ₁, λ₂} and minor axis length min{λ₁, λ₂}.
- (10) Recall that the matrix for a rotation by an angle θ about the origin is given by the matrix

$$R_{\theta} = \begin{pmatrix} \cos\left(\theta\right) & -\sin\left(\theta\right) \\ \sin\left(\theta\right) & \cos\left(\theta\right) \end{pmatrix}.$$

- (a) Show that for all $\theta \in (0, \pi)$ the matrix R_{θ} has no eigenvalues in \mathbb{R} .
- (b) Explain heuristically why this is the case.
- (c) Does the matrix R_{π} have any eigenvalues? What gives?

DEPARTMENT OF MATHEMATICS, SPRING HILL COLLEGE, MOBILE, AL 36608 *E-mail address*: cmullikin@shc.edu