
MATH 321 Section 01
Homework 3

Below is a list of problems that I will collect Monday March 19. You should write up solutions carefully and neatly
and staple your work. All problems from the homework are fair game on the exams! You are encouraged to work in
groups, but you must write up your own solutions. I will be available during office hours for help.

(1) Find the standard matrix for the linear operator defined by the formula.
(a) T (x1, x2) = (2x1 − x2, x1 + x2).
(b) K(x1, x2) = (x1, x2).
(c) E(x1, x2, x3) = (x1 + 2x2 + x3, x1 + 5x2, x3).

(2) Let Pn(R) denote the set of polynomials of degree at most n with real coefficients. Recall, the differential
operator D : Pn(R) −→ Pn−1(R) is a linear transformation. Find the corresponding matrix form for D in
the case n = 3. [Hint: Represent x3 as (1, 0, 0, 0), x2 as (0, 1, 0, 0), x as (0, 0, 1, 0), and 1 as (0, 0, 0, 1).]

(3) Prove that the set Mmn (the set of all m× n real valued matrices) is a vector space under matrix addition and
scalar multiplication.

(4) Let A ∈ Mmn, then we define the kernel of A to be the set ker A = {~x ∈ Rn : A~x = ~0}. Prove that ker A is
a subspace of Rn.

(5) Suppose

A =


1 −1 3 1
3 −3 9 3
1 0 1 −1
5 −2 9 −1

 .

Compute ker A and describe the set geometrically.
(6) Prove the Cauchy-Schwarz inequality |u · v| ≤ ‖u‖‖v‖ for all vectors in Rn.
(7) This exercise is to illustrate the concept of eigenvalues/eigenvectors. We start with a definition.

Definition 1. Let A ∈ Mnn and suppose that A~x = λ~x for some λ ∈ C and ~x ∈ Rn. We call λ an eigenvalue
for A and ~x the eigenvector for A corresponding to λ.

Show that λ is an eigenvalue for A with eigenvector ~x if and only if det (A− λI) = 0 where I is the n×n
identity matrix.

(8) Let A be the matrix

A =
(

1 2
3 0

)
.

Find all the eigenvalues for A as well as the corresponding eigenvectors.
(9) Let A be the diagonal matrix

A =
(

a 0
0 b

)
where a and b are each positive real numbers.
(a) Compute the eigenvalues λ1, λ2 and corresponding eigenvectors for A.
(b) Show that the image of the unit circle by A is the ellipse with major axis length max{λ1, λ2} and minor

axis length min{λ1, λ2}.
(10) Recall that the matrix for a rotation by an angle θ about the origin is given by the matrix

Rθ =
(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)
.

(a) Show that for all θ ∈ (0, π) the matrix Rθ has no eigenvalues in R.
(b) Explain heuristically why this is the case.
(c) Does the matrix Rπ have any eigenvalues? What gives?
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