MATH 321 Section 01

Homework 4

Below is a list of problems that I will collect Monday April 9. You should write up solutions carefully and neatly and staple your work. All problems from the homework are fair game on the exams! You are encouraged to work in groups, but you must write up your own solutions. I will be available during office hours for help.
(1) Let M_{22} denote the vector space of all real valued 2×2 matrices. Find two different bases for M_{22}.
(2) Which of the following sets of vectors in P_{2} are linearly independent?
(a) $2-x+4 x^{2}, 3+6 x+2 x^{2}, 2+10 x-4 x^{2}$
(b) $3+x+x^{2}, 2-x+5 x^{2}, 4-3 x^{2}$
(c) $6-x^{2}, 1+x+4 x^{2}$
(d) $1+3 x+3 x^{2}, x+4 x^{2}, 5+6 x+3 x^{2}, 7+2 x-x^{2}$
(3) Show that if $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{r}\right\}$ is a linearly independent set of vectors, then so is nonempty subset of \mathcal{B}.
(4) Show that if $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly dependent set of vectors in a vector space \mathcal{V}, and \vec{v}_{4} is any vector in \mathcal{V}, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is also linearly dependent.
(5) Find the coordinate vector of \vec{v} relative to the basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
(a) $\vec{v}=(2,-1,3) ; \vec{v}_{1}=(1,0,0), \vec{v}_{2}=(2,2,0), \vec{v}_{3}=(3,3,3)$
(b) $\vec{v}=(5,-12,3) ; \vec{v}_{1}=(1,2,3), \vec{v}_{2}=(-4,5,6), \vec{v}_{3}=(7,-8,9)$
(6) Find the coordinate vector of \vec{p} relative to the basis $\mathcal{B}=\left\{\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}\right\}$.
(a) $\vec{p}=4-3 x+x^{2} ; \vec{p}_{1}=1, \vec{p}_{2}=x, \vec{p}_{3}=x^{2}$
(b) $\vec{p}=2-x+x^{2} ; \vec{p}_{1}=1+x, \vec{p}_{2}=1+x^{2}, \vec{p}_{3}=x+x^{2}$
(7) Determine the bases for the following subspaces of \mathbb{R}^{3}.
(a) the plane $3 x-2 y+5 z=0$
(b) the plane $x-y=0$
(c) the line $x=2 t, y=-t, z=4 t$
(d) all vectors of the form (a, b, c) where $b=a+c$.
(8) In each part, a matrix in row-echelon form is given. By inspection, find bases for the row and column spaces of A.
(a) $\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{cccc}1 & -3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & 2 & 4 & 5 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$
(d) $\left(\begin{array}{cccc}1 & 2 & -1 & 5 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 1\end{array}\right)$
(9) Find a basis for the row space, column space, and nullspace of the following matrices.
(a) $\left(\begin{array}{ccc}1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccccc}1 & 4 & 5 & 6 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8\end{array}\right)$
(10) Find a basis for the subspace of \mathbb{R}^{4} spanned by the given vectors.
(a) $\vec{v}_{1}=(1,0,1,1), \vec{v}_{2}=(-3,3,7,1), \vec{v}_{3}=(-1,3,9,3), \vec{v}_{4}=(-5,3,5,-1)$
(b) $\vec{v}_{1}=(1,-2,0,3), \vec{v}_{2}=(2,-4,0,6), \vec{v}_{3}=(-1,1,2,0), \vec{v}_{4}=(0,-1,2,3)$
(c) $\vec{v}_{1}=(1,-1,5,2), \vec{v}_{2}=(-2,3,1,0), \vec{v}_{3}=(4,-5,9,4), \vec{v}_{4}=(0,4,2,-3), \vec{v}_{5}=(-7,18,2,-18)$

Department of Mathematics, Spring Hill College, Mobile, AL 36608
E-mail address: cmullikin@shc.edu

