
A couple of Max Min Examples

§ 3.6 # 2) Find the maximum possible area of a rectangle of perimeter 200m.

Solution : As is the case with all of these problems, we need to find a
function to minimize or maximize and a closed interval on which the function is
continuous. The goal is to find a closed interval that defines the region we care
about.
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Figure 1: Rectangle of perimeter 200m

We are asked to maximize the area of a rectalngle. So, we have an equation
for that A = lw. We also know that the perimeter of the rectangle is to be
200m. That is we know 2l + 2w = 200. So, we need to write the area function
as a function of one variable. Fortunately, we know from the constraint on the
perimeter that 2l + 2w = 200 and so l = 100−w. Hence, we can write the area
function as a function of w. Indeed, we have A(w) = (100−w)w = 100w−w2.
Now, we will want to find a closed interval so that we can use the theory. We
know that the smallest the width can be is zero, thus the left endpoint of the
closed interval will be 0. Then we also know that the length can only get as
small as zero. So, when the length is zero we see from the perimieter constraint
equation that w = 100. So, we now have our interval [0, 100] and we want to
maximize the area function when w ∈ [0, 100]. The theory tells us that this
maximum value must occur either at an endpoint of the interval or at a critical
point of the function. So, we will need to check all of these. Let’s find the critical
points. Recall, a critical point of the function A(w) is a point so that A′(w) = 0
or A′(w) is undefined. Since A′(w) = 100− 2w we see that this will be defined
everywhere in our interval [0, 100] (indeed it is defined everywhere). So, the
only critical points we can hope to get occur when A′(w) = 0. So, A′(w) = 0
implies that 100− 2w = 0 and this occurs when w = 50. Fortunately this value
is in our closed interval so we need to check it. Thus to conclude the problem
we need to check the value of the area function at each of the endpoints w = 0
and w = 100, as well as at the critical point w = 50.

A(0) = 0

A(50) = 100(50)− 502 = 5000− 2500 = 2500
A(100) = 0
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For my next trick I’ll see if I answered the problem that was asked. We were
asked to find the maximum possible area. Did we do that? You betcha’, and
that maximum value is 2500m2.
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§ 3.6 # 4) A farmer has 600m of fencing with which to enclose a rectangular
pen adjacent to a long existing wall. He will use the wall for one side of the pen
and the available fencing for the remaining three sides. What is the maximum
area that can be enclosed in this way?

Solution : Ok, I’m going to be a little more brief with the rest of these.
But the plan of attack is always the same. Find a function to minimize or
maximize. Define a closed interval of interest which should be evident by either
a given constraint or physical constraints. Use the theory to find all possible
points in the interval that can lead to the maximum or minimum value of the
function in the interval. Evaluate the function at each one of the critical points
and endpoints to see which give the largest and smallest values of the function
on the interval.
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Figure 2: Rectangle with three sides to cover (the dashed line is the side against
the wall)

Let’s get to work. We want to maximize area A = lw. We know that we
have 600m of fencing and that we only need to use it on three sides of the enclo-
sure (since the other side is taken up by the wall. Thus we have the constraint
600 = 2w+ l. Thus, we see that l = 600−2w and we can write the area function
as a function of one variable A(w) = (600−2w)w = 600w−2w2. Next, we need
to find the closed interval. One endpoint will be if we have zero width and the
other endpoint will be found by supposing that the length is zero. Indeed, if
the length is zero, then we see from the constraint equation that 600 = 2w + 0
and hence w = 300. So, the closed interval will be [0, 300].

On to the theory. We know that the only candidates for a maximum in the
interval [0, 300] is either an endpoint or a critical point. So, to find the critical
points, we take the derivative. A′(w) = 600− 4w, which is defined everywhere,
so it is defined in the interval [0, 300]. We also get critical points when A′(w) = 0
and this occurs only when w = 150, which is in the interval. Now it remains to
check to see if the critical point or the endpoint will give us the maximum value.
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A(0) = 0

A(150) = 600(150)− 2(150)2 = 45000
A(300) = 0

So, the maximum area occurs when the width is 150m and the length is 300m,
giving us a maximum area of 45000m2.

4



§ 3.6 # 6) If x is in the interval [0, 1], then x − x2 is not negative. What
is the maximum value that x − x2 can have on that interval? In other words,
what is the greatest amount by which a real number can exceed its square?

Solution :
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Figure 3: Here we see the graph of the functions f(x) = x and g(x) = x2. Note
that only on the closed interval [0, 1] is it true that x ≥ x2. The function we
are minimizing (x− x2)is the distance between these two functions.

We are already given the function and the interval on which to maximize
the function. So there’s no setup required. We know that the maximum on this
interval will occur at either (you guessed it) an endpoint or at a critical point.
Let’s find the critical points. The derivative of the function will be the function
x 7→ 1 − 2x (whoa! new notation! They didn’t give the function a name, so
we can say that the function we have is x 7→ x − x2 which is read “x maps to
x−x2”, thus its derivative is the function x maps t0 1 - 2x). Since the derivative
is defined everywhere we see that the only critical points we will get occur when
it is equal to zero. 1 − 2x = 0 implies x = 1/2 which is in the given interval.
So, we need to check the possibilities,

0 7→ 0− 02 = 0

1
2
7→ 1

2
− 1

2

2

=
1
4

1 7→ 1− 12 = 0

That’s kinda neat. The greatest amount a real number can exceed its square
is exactly 1

4 . Cool.
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§ 3.6 # 8) A rectangle of fixed perimeter 36 is rotated about one of its sides,
thus sweeping out a figure in the shape of a right circular cylinder (Fig. 3.6.17).
What is the maximum possible volume of that cylinder?

Solution :

r

h

Figure 4: A not so good copy of Fig. 3.6.17 with suggestive variable labelling.

We want to maximize the volume V = πr2h. Let’s be a little sneaky and
write the perimeter of the rectangle as 2h+2r = 36. Then we see that h = 18−r
and so the volume equation can be expressed as a function of one variable
V (r) = πr2(18 − r) = 18πr2 − πr3. Moreover, the physical constraints of the
problem tell us that we are only concerned with values of r in the closed in-
terval [0, 18] (obtained by the fact that r cannot be negative and finding what
r is if h = 0 in the perimeter constraint). So, now we find critical points.
V ′(r) = 36πr − 3πr2 = 3πr(12 − r). This is a polynomial so it is defined ev-
erywhere. The other critical points can occur when V ′(r) = 0 which happens
either when 3πr = 0 or when 12− r = 0. Thus V ′(r) = 0 when r = 0 or when
r = 12. So, we only need to check the endpoints 0 and 18 as well as the critical
points 0 (which is redundant) and 12.

V (0) = 0
V (12) = 864π

V (18) = 0

So, the maximum possible volume of the cylinder is 864π cubic whatevers
(the units are not given).
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§ 3.6 # 10) Suppose that the strength of a rectangular beam is proportional
to the product of the width and the square of the height of its cross section.
What shape beam should be cut from a cylindrical log of radius r to achieve
the greatest possible strength?

Solution : First we need to discuss what “is proportional to” means. To
say that x is proportional to y (written x ∝ y) means that there exists some
constant c so that x = cy. So in the case of this problem we know that the
strength (S) is proportional to the product of the width and the square of the
height of its cross section (wh2). So, we get the relation S ∝ wh2 which means
that there is some constant c out there in la-la land so that S = cwh2. I shall
assume by “cross section” they mean the circular cross section of the log.

l
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Figure 5: A circular cross section of the log.

We see that we have the equation r2 = w2/4 + h2/4 from the triangle in
the cross section. Keep in mind that we know r and c are both constants. So,
if we wanted to write the strength equation as a function of one variable we
need to find either h in terms of w or w in terms of h. It may be better to
write h in terms of w because otherwise we will have to do some nasty algebra
when we substitute into the strength equation. Indeed, h = ±

√
4r2 − w2, and

we will take h =
√

4r2 − w2 to avoid negative height. So, the strength can now
be written as

S(w) = cwh2 = cw(
√

4r2 − w2)2 = cw(4r2 − w2) = 4cr2w − cw3.

Now we need to define a closed interval. Certainly we know that the width
must be non-negative so we get the usual left endpoint zero. The right endpoint
is found by assuming that the other variable dimension is zero. Indeed, if h = 0
then we see from the equation r2 = w2/4 + 02 that w = ±2r (again we only
care about when w = +2r). So, the right endpoint is 2r. The closed interval is
[0, 2r]. Next we find the critical points.
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S′(w) = 4cr2 − 3cw2 (remember that c and r are constants).

S′(w) is defined everywhere and S′(w) = 0 when w = 2r/
√

3, which is in
the interval. Let’s find which gives us the largest strength.

S(0) = 4cr2(0)− c(0)3 = 0

S

(
2r√
3

)
= 4cr2

(
2r√
3

)
− c

(
2r√
3

)3

=
16cr3

3
√

3
S(2r) = 8cr3 − 8cr3 = 0

So, the strength is the greatest when the width of the beam is 2r/
√

3 and
the height is

√
4r2 − 4r2/3 giving us a strength of 16cr3/(3

√
3).
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§ 3.6 # 12) Find the maximum possible volume of a right circular cylinder
if its total surface area-including both circular ends-is 150π.

Solution : The volume is given by the equation V = πr2h and the surface
area constraint is given by 2πr2 + 2πrh = 150π.

r

h

Figure 6: A cylinder.

We can solve the surface area constraint equation for h and obtain

h =
150π − 2πr2

2πr
=

75− r2

r
.

This allows us to rewrite the volume equation as

V (r) = πr2 75− r2

r
= 75πr − πr3

where r ∈ [0, 5
√

3]. How did I get the closed interval you may ask? Well,
certainly r must be non-negative so we have r ≥ 0 giving us the left endpoint
zero. Then, if the other dimension, h, were zero we see from the surface area
constraint equation that 2πr2 + 2πr(0) = 150π, which tells us that r =

√
75 =

5
√

3. Now we need to find critical points.

V ′(r) = 75π − 3πr2

So, there are no critical points given to us when V ′(r) is undefined (since
it is defined everywhere). Thus, the only critical points we can get are when
V ′(r) = 0. This happens when 75π − 3πr2 = 0 and this implies that r = ±5.
But −5 is not in the closed interval we have defined, so we throw it away. Thus
we need to check the value of the volume at the three points r = 0, r = 5, and
r = 5

√
3.

V (0) = 75π(0)− π(0)3 = 0

V (5) = 75π(5)− π(5)3 = 375π − 125π = 250π

V (5
√

3) = 75π(5
√

3)− π(5
√

3
3

= 0

9



So, we see that the maximum volume will occur when r = 5 and h = 10,
giving us a volume of 250π cubic whatevers (again, no units were given).
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§ 3.6 # 14) A rectangle has a line of fixed length L reaching from one vertex
to the midpoint of one of its far sides (Fig. 3.6.19). What is the maximum
possible area of such a rectangle?

Solution :

L

x

y/2

Figure 7: A bad copy of Fig. 3.6.19.

We want to maximize the area of the rectangle A = xy. To find the constraint
function good ’ol Pythagoras tells us that L2 = x2 + (y/2)2. So, we can solve
this constraint equation for y to obtain y = ±2

√
L2 − x2, again we are only

concerned with the positive square root. So, we can write the area as a function
of one variable A(x) = 2x

√
L2 − x2. The variable x must be non-negative

and so the left endpoint of the necessary closed interval is again zero. Then,
since y must also be non-negative we see that the largest x can be is when
L2 = x2 + (0/2)2 which tells us that the right endpoint is L. So, the closed
interval we have is [0, L]. To find the critical points we take the derivative of
the area function and look to see where it is zero or undefined in [0, L].

A′(x) = 2
√

L2 − x2 + 2x

(
1
2

)(
L2 − x2

)−1/2
(−2x)

=
2
(
L2 − x2

)
− 2x2

(L2 − x2)1/2

=
2L2 − 4x2

(L2 − x2)1/2

Since x ∈ [0, L] we see that the denominator is always well defined (we don’t
take the square root of a negative numer). It is the case that the denominator
evaluates to zero when x = ±L and so the derivative is undefined at these two
points. The other critical points occur when the numerator is zero. This occurs
exactly when x = ±L/

√
2. So, there are a total of four critical points. Only two

of them live in the interval [0, L], specifically x = L and x = L/
√

2. So, we need
to check these critical points as well as the endpoints (note that one of the criti-
cal points is an endpoint, so we really only need to check a total of three values).
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A(0) = 2(0)
√

L2 − 02 = 0

A(L/
√

2) = 2(L/
√

2)
√

L2 − L2/2 = 2(L/
√

2)
√

L2/2 = 2(L/
√

2)(L/
√

2) = L2

A(L) = 2(L)
√

L2 − L2 = 0

So, we see that the maximum area occurs when x = L/
√

2 and y = 2L/
√

2
giving us an area of L2.
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§ 3.6 # 45) A small island is 2km off shore in a large lake. A woman on
the island can row her boat 10km/h and can run at a speed of 20km/h. If she
rows to the closest point of the straight shore, she will land 6km from a village
on the shore. Where should she land to reach the village most quickly by a
combination of rowing and running?

Solution : First we need to sketch a figure to see what is going on.

6

x

2

Figure 8: Here we see the possible path the woman may take on her way to the
village. The point on the tip of the triangle represents her start point on the
island. If she were to go straight to shore then she would travel 2km across the
water as indicated by the vertical line in the illustration. Once she hits land
I have decided to let x denote the length of land that she skipped. I did this
because I know that at some point I will need to compute the length of the
longest side of the triangle, and this choice of x will make that computation
much easier.

We need to minimize the time it takes to get from the island to the village.
Therefore, we first need to find an equation that tell us how much time it will
take depending on her choice of path. So, first we need to figure out how
much time it will take for each part of her path. As seen in the illustration the
distance the woman will travel across water is the length of the hypotenuse of the
right triangle. Thus this distance will be

√
4 + x2 by the Pythagorean theorem.

Furthermore, the remaining distance she travels on land will be exactly 6 − x.
Therefore, the total distance she travels is the sum of these two quantities.
However, we are trying to minimize the time it takes. So, we know how fast she
can travel across land and water, and we have an expression for the distance
as well. So, since we have the equation d = rt (distance equals the product of
rate and time) we know that we can compute the time it takes her to cross each
piece as well. Indeed, to find the time we need only solve the distance equation
for t. This gives us t = d/r. Thus, to cross the hypotenuse it will take time
1
10

√
4 + x2 and the time needed to cross the land will be 1

20 (6 − x). Then, if
we add these two times together, we will obtain the function that we want to
minimize.
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T (x) =
√

4 + x2

10
+

(6− x)
20

.

So, now we need to find a closed interval so restrict our attention to so that
we may use the theory. This is alomost immediate from the picture. We see that
the interval we want is exactly [0, 6]. Furthermore, we see that the function we
have is continuous everywhere. Since the only term that looks a little dangerous
is the square root term. However, this isn’t a problem because 4 + x2 > 0 for
all x ∈ R. So, in fact, T (x) is continuous everywhere, and so it is certainly
continuous on the closed interval [0, 6].

So, the theory tells us that we can find the minimum (and maximum) of
T (x) on the closed interval [0.6] and that it is found by evaluating T (x) at an
endpoint of the closed interval, or at a critical point of T (x). So, let’s compute
the derivative of T (x).

T ′(x) =
1
10

(
1
2
(4 + x2)−

1
2 (2x)

)
− 1

20

=
x

10
√

4 + x2
− 1

20

=
2x−

√
4 + x2

20
√

4 + x2

Notice that this will be defined everywhere because the denominator is
strictly positive (i.e., never zero) and the numerator is defined everywhere for
reasons similar to the above showing that T (x) is continuous. So, the only crit-
ical points will occur when T ′(x) = 0. This only happens when the numerator
is zero. So, let’s find when that is zero.

2x−
√

4 + x2 = 0

⇒2x =
√

4 + x2

⇒4x2 = 4 + x2

⇒x2 =
4
3

⇒x = ± 2√
3

We know that we are only concerned with the positive solution since the
other is outside of our interval. So, it remains to check the value of T (x) and
the endpoints and the critical point.
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T (0) =
1
2

T

(
2√
3

)
=
√

3 + 3
10

≈ .4732050808

T (6) =
√

10
5
≈ .6324555320

So, we se that the route that requires the least time is the one corresponding
to x = 2/

√
3, and the time this will take is approximately .4732050808 hours.

15



§ 3.6 #27) A printing company has eight presses, each of which can print
3600 copies per hour. It costs $5.00 to set up each press for a run and 10 + 6n
dollars to run n presses for 1 hour. How many presses should be used to print
50,000 copies of a poster most profitably?

Solution : We want to maximize the profit. To maximize the profit obtained
by selling 50,000 posters will be achieved if we can minimize the cost to produce
these 50,000 posters. So, we ned to construct a function to minimize. Let n be
the number of presses that we will use. Then, if t is the time it takes to print
50,000 copies we see that to find the time in terms of the number of presses we
use we need to solve the equation 3600nt = 50, 000 (we get this equation by
noticing that if I have n presses then they can produce 3600n copies in an hour.
So they can produce 3600nt copies in t hours. Finally, if I know that I need to
make 50,000 copies, then I need to solve 3600nt = 50, 000 for t). Solving this
tells us that,

t =
50000
3600n

=
125
9n

.

Then, now that we know the time we can compute the cost. We want the
cost to run n presses for t hours. This is given by,

c(n) = 5n + (10 + 6n)t = 5n + (10 + 6n)
125
9n

= 5n +
1250
9n

+
750
9

.

We know that we can not use any less than 0 presses and no more than 8.
So it seems that the interval we are interested in is [0, 8]. But wait, STOP THE
PRESSES! The cost function is not continuous on this interval! It’s
not even defined for n = 0. So, let’s ponder for a minute. Can we get rid of
the zero somehow? That is the only place where c(n) is discontinuous. Indeed
we can! We aren’t going to be able to get 50,000 copies of anything if we don’t
have at least one press. So, let’s use the closed interval [1, 8] instead. Then the
function is continuous on this interval and we can apply the theory. We need
to find the critical points.

c′(n) = 5− 1250
9n2

=
45n2 − 1250

9n2

This is only undefined when n = 0 and this is not in our new and improved
closed interval. So, the critical points can only be where c′(n) = 0. So, we need
to solve for that.
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c′(n) = 0

⇒45n2 − 1250 = 0

⇒n2 =
1250
45

⇒n2 =
250
9

⇒n =
5
√

10
3

≈ 5.270462768

Now, before we get ahead of ourselves let’s stop and think for a minute.
What is this critical point we just found correspond to? It’s suppose to be
the number of presses we want to use right? So, does it make sense to use
5.270462768 presses? Not really. How can you use a fraction of a press? So, it
seems to reason that we will want to use some whole number near 5.270462768.
So, lets try 5 and 6. Then we have,

c(1) =
2045

9
≈ 227.2222222

c(5) =
1225

9
≈ 136.1111111

c

(
5
√

10
3

)
=

50
√

10 + 250
3

≈ 136.0379610 (just for kicks)

c(6) =
3685
27

≈ 136.4814815

c(8) =
5065
36

≈ 140.6944444

From the above data we see that we minimize the cost to print the posters
when we use 5 presses. Just to see that this looks right, look at the graph of
the cost function below.
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Figure 9: A plot of the cost function c(n)
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