Here are a couple of proofs to the following

Theorem 1. Given a set ofi + 1 positive integers, none exceeding 2n, there is at least one
integer in this set that divides another integer in the set.

Proof. (Induction)Let P(n) be the proposition “ifA is a set ofn. + 1 positive integers,
none exceedingn, then there is at least one integerAnthat divides another integer in
A and letS = {n € N|P(n) =T}. We will use PMI (the Principle of Mathematical
Induction) to show thaf = N. To do this, we need to establish two cases.

(1) 1 € S. (The Base Case)

(2) If n € S,thenn + 1 € S. (The Induction Step)

To see the first condition, notice that when= 1 the setA can only consist o pos-
itive integers no larger thad. Since there are exactly two such integers it follows that
A = {1,2}. Notice thatl | 2 and so the base case has been established.

Now we define the induction hypothesis. Assume tR&at) is true. That is, assume
that if A is any set containing + 1 positive integers, none of which exce®d, then there
exist elements, b € A so thata | b. We need to use this to prove thatn + 1) is true.

P(n+1) is the statement “iB is a set of(n + 1) + 1 positive integers, none exceeding
2(n + 1), then there is at least one integerBrthat divides another integer iB.” We will
attempt to prove this directly using the induction hypothesis. So, assumB ikat set of
n + 2 positive integers none of which exce2d + 2. We need to break this up into a few
cases.

Case 1:If 2n + 1 ¢ B and2n + 2 ¢ B, then every element a8 is less than or equal
to 2n. So, take out any one elemenfrom B. What we have left is the sé \ {«} which
containsn + 1 positive integers none of which exce®2a. So, by the induction hypothesis,
there exist elements b € B\ {z} so thata | b. Note thata andb are also inB. So we
have found two elements @ so that one divides the other and we are done.

Case 2:If 2n 4+ 1 € B or2n + 2 € B but not both. This case is really the same as the
last case with one little change. We know that eitber+ 1 or 2n + 2 are in B but not
both. So, it follows that every element &f is less than or equal t&n with exactly one
exception £n + 1 or 2n + 2, whichever is inB). So, take out the exception. What remains
is a set ofn + 1 elements none of which exce@d. So, as in the last case, the induction
hypothesis guarantees us two elemenésdb so thata | b. Since these elements must be
in B we are done.

Case 3:If 2n + 1 € B and2n + 2 € B, then we have a little problem. We are only
allowed one element larger than in B if we want to use the same argument as above. If
| throw out2n + 1, then | have a seB \ {2n + 1} consisting ofn + 1 positive integers
but I don’t know that none of them exceed. In fact thereis an element that exceedls,
specifically2n + 2 > 2n. So, we cannot immediately impose the induction hypothesis.
So, we need to use a nontrivial trick. Consider thel3&t{2n + 2} and add the element
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n + 1 providedn + 1 ¢ B (if n + 1 € B then we are done sinee+ 1 | 2n + 2). This

gives us some new sét = (B \ {2n + 2}) U {n + 1}. That is, we have thrown out the
element2n + 2 and replaced it with the element+ 1. We need to check that this does

not invalidate the problem. Notice that this trick will be dangerousf 1 is divided by

some element oB that2n + 2 is not divided byor if n 4 1 divides some element ds.

If either of these things happen then | have altered the set in such a way that the element
| have added would make the statement true, but without it the statement may be false.
Not to worry. If there is an element € B that dividesn + 1, then it must also divide

2n 4+ 2 = 2(n + 1). Furthermore, sincén + 2 = 2(n + 1) we see than + 2 is the
smallestpositive integer multiple of. + 1 (other thann + 1)(1) which we don’t consider
because a set cannot have repeated elements). But, we thr@n eu?, so there is no
element ofC' that can possibly be divided by+ 1. It follows that we have not changed

the validity of our proof by removingn + 2 and adding: + 1 in its place. Now, we have a
setC that contains: + 2 positive integers and exactly one of which excegdsWe have
reduced this case to the previous case and so we are done. O

Proof. (Pigeon Hole Principle)Copied verbatim from example 11 §4.2 of Kenneth H.
Rosen’s Discrete Mathematics and Its Applicatidristh Edition, pg 317.

Write each of ther + 1 integersay, as, . . ., a1 @s a power of 2 times an odd integer.
In other words, leti; = 2%ig; for j = 1,2,...,n + 1, wherek; is a nonnegative integer
andg; is odd. The integerg;, ¢, . . . , ¢n+1 are all odd positive integers less thzm Since
there are only: odd positive integers less than, it follows from the pigeonhole principle
that two of the integerg, , ¢o, . . ., ¢,+1 Must be equal. Therefore, there are integersd;
such thay; = ¢;. Letq be the common value @f andg;. Then,a; = 2*:g anda; = 2*iq.
It follows that if k; < k;, thena; dividesa;; while if k; > k;, thena; dividesa;. O



