
Here are a couple of proofs to the following

Theorem 1. Given a set ofn+1 positive integers, none exceeding 2n, there is at least one
integer in this set that divides another integer in the set.

Proof. (Induction)Let P (n) be the proposition “ifA is a set ofn + 1 positive integers,
none exceeding2n, then there is at least one integer inA that divides another integer in
A,” and letS = {n ∈ N|P (n) ≡ T}. We will use PMI (the Principle of Mathematical
Induction) to show thatS = N. To do this, we need to establish two cases.

(1) 1 ∈ S. (The Base Case)

(2) If n ∈ S, thenn + 1 ∈ S. (The Induction Step)

To see the first condition, notice that whenn = 1 the setA can only consist of2 pos-
itive integers no larger than2. Since there are exactly two such integers it follows that
A = {1, 2}. Notice that1 | 2 and so the base case has been established.

Now we define the induction hypothesis. Assume thatP (n) is true. That is, assume
that if A is any set containingn + 1 positive integers, none of which exceed2n, then there
exist elementsa, b ∈ A so thata | b. We need to use this to prove thatP (n + 1) is true.

P (n+1) is the statement “ifB is a set of(n+1)+1 positive integers, none exceeding
2(n + 1), then there is at least one integer inB that divides another integer inB.” We will
attempt to prove this directly using the induction hypothesis. So, assume thatB is a set of
n + 2 positive integers none of which exceed2n + 2. We need to break this up into a few
cases.

Case 1:If 2n + 1 /∈ B and2n + 2 /∈ B, then every element ofB is less than or equal
to 2n. So, take out any one elementx from B. What we have left is the setB \ {x} which
containsn+1 positive integers none of which exceed2n. So, by the induction hypothesis,
there exist elementsa, b ∈ B \ {x} so thata | b. Note thata andb are also inB. So we
have found two elements ofB so that one divides the other and we are done.

Case 2:If 2n + 1 ∈ B or 2n + 2 ∈ B but not both. This case is really the same as the
last case with one little change. We know that either2n + 1 or 2n + 2 are inB but not
both. So, it follows that every element ofB is less than or equal to2n with exactly one
exception (2n+1 or 2n+2, whichever is inB). So, take out the exception. What remains
is a set ofn + 1 elements none of which exceed2n. So, as in the last case, the induction
hypothesis guarantees us two elementsa andb so thata | b. Since these elements must be
in B we are done.

Case 3: If 2n + 1 ∈ B and2n + 2 ∈ B, then we have a little problem. We are only
allowed one element larger than2n in B if we want to use the same argument as above. If
I throw out2n + 1, then I have a setB \ {2n + 1} consisting ofn + 1 positive integers
but I don’t know that none of them exceed2n. In fact thereis an element that exceeds2n,
specifically2n + 2 > 2n. So, we cannot immediately impose the induction hypothesis.
So, we need to use a nontrivial trick. Consider the setB \ {2n + 2} and add the element
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n + 1 providedn + 1 /∈ B (if n + 1 ∈ B then we are done sincen + 1 | 2n + 2). This
gives us some new setC = (B \ {2n + 2}) ∪ {n + 1}. That is, we have thrown out the
element2n + 2 and replaced it with the elementn + 1. We need to check that this does
not invalidate the problem. Notice that this trick will be dangerous ifn + 1 is divided by
some element ofB that2n + 2 is not divided byor if n + 1 divides some element ofB.
If either of these things happen then I have altered the set in such a way that the element
I have added would make the statement true, but without it the statement may be false.
Not to worry. If there is an elementa ∈ B that dividesn + 1, then it must also divide
2n + 2 = 2(n + 1). Furthermore, since2n + 2 = 2(n + 1) we see that2n + 2 is the
smallestpositive integer multiple ofn + 1 (other than(n + 1)(1) which we don’t consider
because a set cannot have repeated elements). But, we threw out2n + 2, so there is no
element ofC that can possibly be divided byn + 1. It follows that we have not changed
the validity of our proof by removing2n+2 and addingn+1 in its place. Now, we have a
setC that containsn + 2 positive integers and exactly one of which exceeds2n. We have
reduced this case to the previous case and so we are done. ¤

Proof. (Pigeon Hole Principle)Copied verbatim from example 11 in§ 4.2 of Kenneth H.
Rosen’s Discrete Mathematics and Its Applications, Fifth Edition, pg 317.

Write each of then + 1 integersa1, a2, . . . , an+1 as a power of 2 times an odd integer.
In other words, letaj = 2kj qj for j = 1, 2, . . . , n + 1, wherekj is a nonnegative integer
andqj is odd. The integersq1, q2, . . . , qn+1 are all odd positive integers less than2n. Since
there are onlyn odd positive integers less than2n, it follows from the pigeonhole principle
that two of the integersq1, q2, . . . , qn+1 must be equal. Therefore, there are integersi andj
such thatqi = qj . Letq be the common value ofqi andqj . Then,ai = 2kiq andaj = 2kj q.
It follows that if ki < kj , thenai dividesaj ; while if ki > kj , thenaj dividesai. ¤


