Here are a couple of proofs to the following

Theorem 1. Given a set of $n+1$ positive integers, none exceeding $2 n$, there is at least one integer in this set that divides another integer in the set.

Proof. (Induction) Let $P(n)$ be the proposition "if A is a set of $n+1$ positive integers, none exceeding $2 n$, then there is at least one integer in A that divides another integer in A," and let $S=\{n \in \mathbb{N} \mid P(n) \equiv T\}$. We will use PMI (the Principle of Mathematical Induction) to show that $S=\mathbb{N}$. To do this, we need to establish two cases.
(1) $1 \in S$. (The Base Case)
(2) If $n \in S$, then $n+1 \in S$. (The Induction Step)

To see the first condition, notice that when $n=1$ the set A can only consist of 2 positive integers no larger than 2 . Since there are exactly two such integers it follows that $A=\{1,2\}$. Notice that $1 \mid 2$ and so the base case has been established.

Now we define the induction hypothesis. Assume that $P(n)$ is true. That is, assume that if A is any set containing $n+1$ positive integers, none of which exceed $2 n$, then there exist elements $a, b \in A$ so that $a \mid b$. We need to use this to prove that $P(n+1)$ is true.
$P(n+1)$ is the statement "if B is a set of $(n+1)+1$ positive integers, none exceeding $2(n+1)$, then there is at least one integer in B that divides another integer in B." We will attempt to prove this directly using the induction hypothesis. So, assume that B is a set of $n+2$ positive integers none of which exceed $2 n+2$. We need to break this up into a few cases.

Case 1: If $2 n+1 \notin B$ and $2 n+2 \notin B$, then every element of B is less than or equal to $2 n$. So, take out any one element x from B. What we have left is the set $B \backslash\{x\}$ which contains $n+1$ positive integers none of which exceed $2 n$. So, by the induction hypothesis, there exist elements $a, b \in B \backslash\{x\}$ so that $a \mid b$. Note that a and b are also in B. So we have found two elements of B so that one divides the other and we are done.

Case 2: If $2 n+1 \in B$ or $2 n+2 \in B$ but not both. This case is really the same as the last case with one little change. We know that either $2 n+1$ or $2 n+2$ are in B but not both. So, it follows that every element of B is less than or equal to $2 n$ with exactly one exception ($2 n+1$ or $2 n+2$, whichever is in B). So, take out the exception. What remains is a set of $n+1$ elements none of which exceed $2 n$. So, as in the last case, the induction hypothesis guarantees us two elements a and b so that $a \mid b$. Since these elements must be in B we are done.

Case 3: If $2 n+1 \in B$ and $2 n+2 \in B$, then we have a little problem. We are only allowed one element larger than $2 n$ in B if we want to use the same argument as above. If I throw out $2 n+1$, then I have a set $B \backslash\{2 n+1\}$ consisting of $n+1$ positive integers but I don't know that none of them exceed $2 n$. In fact there i an element that exceeds $2 n$, specifically $2 n+2>2 n$. So, we cannot immediately impose the induction hypothesis. So, we need to use a nontrivial trick. Consider the set $B \backslash\{2 n+2\}$ and add the element
$n+1$ provided $n+1 \notin B$ (if $n+1 \in B$ then we are done since $n+1 \mid 2 n+2$). This gives us some new set $C=(B \backslash\{2 n+2\}) \cup\{n+1\}$. That is, we have thrown out the element $2 n+2$ and replaced it with the element $n+1$. We need to check that this does not invalidate the problem. Notice that this trick will be dangerous if $n+1$ is divided by some element of B that $2 n+2$ is not divided by or if $n+1$ divides some element of B. If either of these things happen then I have altered the set in such a way that the element I have added would make the statement true, but without it the statement may be false. Not to worry. If there is an element $a \in B$ that divides $n+1$, then it must also divide $2 n+2=2(n+1)$. Furthermore, since $2 n+2=2(n+1)$ we see that $2 n+2$ is the smallest positive integer multiple of $n+1$ (other than $(n+1)(1)$ which we don't consider because a set cannot have repeated elements). But, we threw out $2 n+2$, so there is no element of C that can possibly be divided by $n+1$. It follows that we have not changed the validity of our proof by removing $2 n+2$ and adding $n+1$ in its place. Now, we have a set C that contains $n+2$ positive integers and exactly one of which exceeds $2 n$. We have reduced this case to the previous case and so we are done.

Proof. (Pigeon Hole Principle) Copied verbatim from example 11 in $\S 4.2$ of Kenneth H. Rosen's Discrete Mathematics and Its Applications, Fifth Edition, pg 317.

Write each of the $n+1$ integers $a_{1}, a_{2}, \ldots, a_{n+1}$ as a power of 2 times an odd integer. In other words, let $a_{j}=2^{k_{j}} q_{j}$ for $j=1,2, \ldots, n+1$, where k_{j} is a nonnegative integer and q_{j} is odd. The integers $q_{1}, q_{2}, \ldots, q_{n+1}$ are all odd positive integers less than $2 n$. Since there are only n odd positive integers less than $2 n$, it follows from the pigeonhole principle that two of the integers $q_{1}, q_{2}, \ldots, q_{n+1}$ must be equal. Therefore, there are integers i and j such that $q_{i}=q_{j}$. Let q be the common value of q_{i} and q_{j}. Then, $a_{i}=2^{k_{i}} q$ and $a_{j}=2^{k_{j}} q$. It follows that if $k_{i}<k_{j}$, then a_{i} divides a_{j}; while if $k_{i}>k_{j}$, then a_{j} divides a_{i}.

