MATH 2610 Spring 2003
 Quiz 2

1. Show that if $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is a countably infinite set and if x is any element not in A, then the set $B=\left\{x, a_{1}, a_{2}, a_{3}, \ldots\right\}$ is also countably infinite.

Solution : Since A is countably infinite we know that there exists a bijection $f:\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \longrightarrow \mathbb{N}$. Without loss of generality lets suppose that this function is defined by $f\left(a_{i}\right)=i$. Then, define a new function $g:\left\{x, a_{1}, a_{2}, \ldots\right\} \longrightarrow \mathbb{N}$ by the following:

$$
g(y)= \begin{cases}f(y)+1 & \text { if } y \neq x \\ 1 & \text { if } y=x\end{cases}
$$

Then g is injective since it is merely a shift of an inective function and it is onto since f was onto and we "filled in the hole" obtained by shifting f to the right one unit by defining $g(x)=1$. It follows that g is a bijection and so the set $\left\{x, a_{1}, a_{2}, \ldots\right\}$ is countably infinite.
2. Show that if $a, b, c, d \in \mathbb{Z}$ such that $a \mid c$ and $b \mid d$, then $a b \mid c d$.

Solution : We will prove this directly. Assume that $a, b, c, d \in \mathbb{Z}$ so that $a \mid c$ and $b \mid d$. Then we know that there exist integers s and t so that $c=a s$ and $d=b t$ by definition of $a \mid c$ and $b \mid d$. Then,

$$
\begin{aligned}
c d & =(a s)(b t) \\
& =(a b)(s t) .
\end{aligned}
$$

So, we have found an integer st so that $c d=(a b)(s t)$. That is $a b \mid c d$ as desired.
3. List five integers that are congruent to 4 modulo 12 .

Solution : All integers congruent to 4 modulo 12 look like $4+k \cdot 12$, where $k \in \mathbb{Z}$. Pick any 5 values for k say, $k=1,2,3,4,5$. This gives us the numbers $16,28,40,52$, and 64 , each of which is congruent to 4 modulo 12.

