Name: Chad Mullikin

Test 1

Spring 2003
CS/MATH 2610
February 6, 2003
Directions : You have 75 minutes to complete all 6 problems on this exam. There are a possible 100 points to be earned. You may not use your book or any notes. Please be sure to show all pertinent work. An answer with no work will receive very little credit! If any portion of the exam is unclear please come to me and I will elaborate provided I can do so without giving away the problem.
(1) (20 points)

Answer each of the following questions.
(a) Define a proposition.

A proposition is a declarative statement that is either true or false, but not both.
(b) What does it mean for two propositions P and Q to be logically equivalent?

Two propositions P and Q are equivalent provided they are either both true or both false. I.e., their truth tables agree.
(c) What is the negation of the statement $\forall x \exists y(P(x, y) \rightarrow Q(x, y))$?
$\forall x \exists y(P(x, y) \rightarrow Q(x, y)) \equiv \exists x \forall y(P(x, y) \wedge \sim Q(x, y))$
(d) Let A and B be sets. Define $A \times B$.
$A \times B=\{(a, b) \mid(a \in A) \wedge(b \in B)\}$, that is the set of all ordered pairs (a, b) where a is an element of A and b is an element of B.
(e) Let $A=\{1,2,3\}$ what is $\mathcal{P}(A)$? List the elements. ($\mathcal{P}(A)$ denotes the power set of A.)
$\mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$.
(2) (14 points)

Let P, Q, and R be propositions. Prove or disprove that $(P \rightarrow Q) \rightarrow R$ and $P \rightarrow(Q \rightarrow R)$ are logically equivalent.

Solution : This is false. We can show that it is false by either coming up with a counter example, or showing that the truth tables don't agree. Since I suspect that most folks went ahead and tried to use a truth table, that's what I will do.

P	Q	R	$P \rightarrow Q$	$Q \rightarrow R$	$(P \rightarrow Q) \rightarrow R$	$P \rightarrow(Q \rightarrow R)$
T						
T	T	F	T	F	F	F
T	F	T	F	T	T	T
T	F	F	F	T	T	T
F	T	T	T	T	T	T
F	T	F	T	F	F	T
F	F	T	T	T	T	T
F	F	F	T	T	F	T

Their truth tables don't agree, so they are not equivalent. Looking at the truth table also gives us the desired contradiction. Notice that,

$$
(F \rightarrow T) \rightarrow F \equiv F \text { but } F \rightarrow(T \rightarrow F) \equiv T
$$

For what it's worth, they only differ at one other place,

$$
(F \rightarrow F) \rightarrow F \equiv F \text { but } F \rightarrow(F \rightarrow F) \equiv T
$$

(3) (16 points)

Use Venn diagrams to sketch the following sets.
(a) $A \cap(\overline{B \cap C})$

Figure 1. $A \cap(\overline{B \cap C})$
(b) $[(A \cap B) \cup(B \cap C) \cup(C \cap A)]-(A \cap B \cap C)$

Figure 2. $[(A \cap B) \cup(B \cap C) \cup(C \cap A)]-(A \cap B \cap C)$
(4) (15 points)

Let n be an integer. Prove that if $7 n+2$ is even, then n is even.

You will probably observe that a direct approach is not too fruitful. Let's see what happens if we try it. Assume that $7 n+2$ is even and we want to show then that n is even. Since $7 n+2$ is even we know there exists some integer k so that $7 n+2=2 k$. So, we try to solve for n to show that it is also some multiple of 2 . We obtain $n=2[(k-1) / 7]$. We have no idea that this is an integer! What if $k-1$ isn't divisible by 7 ? So, this approach will not work. Let's try proof by contradiction.

Proof. Suppose that $7 n+2$ is even and that n is odd (here we negated the $p \rightarrow q$ statement to obtain $p \wedge \sim q$ which we will show is always false). Since n is odd we know that there is an integer k so that $n=2 k+1$. Then computation shows us,

$$
7 n+2=7(2 k+1)+2=14 k+9=2(7 k+4)+1
$$

Since $7 k+4$ is an integer we deduce that $7 n+2$ is odd, a contradiction. So our negated statement is always false. Hence, its negation is always true. So, If $7 n+2$ is even, then n is even. (We showed that $\sim(p \rightarrow q) \equiv$ $p \wedge \sim q \equiv F$, therefore $(p \rightarrow q) \equiv \sim(\sim(p \rightarrow q)) \equiv \sim F \equiv T$.) This completes the proof.

Proof by method of contrapositve works just as well. Remember that the statement $p \rightarrow q$ is logically equivalent to $\sim q \rightarrow \sim p$. So, lets try to prove directly the contrapositive statement "if n is odd, then $7 n+2$ is odd."

Proof. Assume that n is odd. Then there exists a $k \in \mathbb{Z}$ so that $n=2 k+1$. Then, direct computation shows that

$$
7 n+2=7(2 k+1)+2=14 k+9=2(7 k+4)+1
$$

Since $l=7 k+4$ is an integer and $7 n+2=2 l+1$ we have shown that $7 n+2$ is odd. So, the contrapositive statement must be true. This completes the proof.
(5) (20 points)

Let A, B, and C be sets. Prove that $A \cap(\overline{B \cap C})=(A \cap \bar{B}) \cup(A \cap \bar{C})$ by showing each side is a subset of the other side. (Just drawing a Venn diagram is not a proof.)

Proof. We already have a picture of $A \cap(\overline{B \cap C})$ and so drawing the Venn diagram for the other side should make you believe that the statement is true. To prove it we need to show

$$
\begin{aligned}
& \text { (1) } A \cap(\overline{B \cap C}) \subseteq(A \cap \bar{B}) \cup(A \cap \bar{C}) \text { and } \\
& \text { (2) }(A \cap \bar{B}) \cup(A \cap \bar{C}) \subseteq A \cap(\overline{B \cap C}) \text {. }
\end{aligned}
$$

So, lets start with proving (1). Let $x \in A \cap \overline{(B \cap C)}$. Then we know that $x \in A$ and $x \in \overline{(B \cap C)}$. Since $x \in \overline{(B \cap C)}$ we know that x is not an element of $B \cap C$. So, this says that either $x \notin B$ or $x \notin C$. There are two cases. If $x \notin B$ then $x \in \bar{B}$ and so $x \in A \cap \bar{B}$. So, I can say that $x \in(A \cap \bar{B}) \cup D$ where D is any set in the world since we know $x \in A \cap \bar{B}$. Let $D=A \cap \bar{C}$. Then we have shown that $x \in(A \cap \bar{B}) \cup(A \cap \bar{C})$. In the other case, suppose that $x \notin C$. Then we know that $x \in \bar{C}$ and so $x \in A \cap \bar{C}$. So, it follows again that $x \in E \cup(A \cap \bar{C})$ where E is any set in the world. So, let $E=A \cap \bar{B}$. Then we have shown (again) that $x \in(A \cap \bar{B}) \cup(A \cap \bar{C})$. Since $x \in B \cap \overline{(A \cap C)}$ was arbitrary it follows that $A \cap \overline{(B \cap C)} \subseteq(A \cap \bar{B}) \cup(A \cap \bar{C})$.

We still need to show (2) is true. So, suppose that $x \in(A \cap \bar{B}) \cup(A \cap \bar{C})$. Then either $x \in A \cap \bar{B}$ or $x \in A \cap \bar{C}$. First let's suppose that $x \in A \cap \bar{B}$. Then we know that $x \in A$ and $x \notin B$. Note that if $x \notin B$ then $x \notin B \cap G$ where G is any set in the world. So, $x \in A$ and $x \notin B \cap G$. Since G is allowed to be any set in the world, let $G=C$. Then we have shown that $x \in A$ and $x \notin B \cap C$. Hence $x \in A \cap \overline{(B \cap C)}$. The other case is similar. Suppose that $x \in A \cap \bar{C}$. Then $x \in A$ and $x \notin C$. So, by a similar argument as before, $A \notin C$ implies $A \notin B \cap C$. So, $x \in A$ and $x \notin B \cap C$. Hence $x \in A \cap \overline{(B \cap C)}$. In either case we have shown that the arbitrary element $x \in(A \cap \bar{B}) \cup(A \cap \bar{C})$ also had to live in $A \cap \overline{(B \cap C)}$. So, it follows that $(A \cap \bar{B}) \cup(A \cap \bar{C}) \subseteq A \cap(\overline{B \cap C})$ as desired.

We have shown that both (1) and (2) are true. So, by definition of equality for sets, this shows that $A \cap(\overline{B \cap C})=(A \cap \bar{B}) \cup(A \cap \bar{C})$ and we have completed the proof.
(6) (15 points)

Let $g:[0, \infty) \longrightarrow[3, \infty)$ be defined by

$$
g(x)=3 x^{2}+3 .
$$

Prove that g is bijective. (Drawing a picture is not sufficient.)

Proof. We need to show that the function g is both injective and surjective. Let's begin with injectivity.

We need to show that for all $x_{1}, x_{2} \in[0, \infty)$, if $g\left(x_{1}\right)=g\left(x_{2}\right)$, then $x_{1}=x_{2}$. So, let x_{1} and x_{2} be arbitrary elements of $[0, \infty)$ and assume that $g\left(x_{1}\right)=g\left(x_{2}\right)$. Then we know that $3 x_{1}^{2}+3=3 x_{2}^{2}+3$. So,

$$
\begin{aligned}
3 x_{1}^{2}+3 & =3 x_{2}^{2}+3 \\
\Rightarrow 3 x_{1}^{2} & =3 x_{2}^{2} \\
\Rightarrow x_{1}^{2} & =x_{2}^{2} \\
\Rightarrow x_{1} & = \pm x_{2}
\end{aligned}
$$

But, x_{1} and x_{2} are elements of $[0, \infty)$ so, $x_{1} \geq 0$ and $x_{2} \geq 0$. So, we can ignore the negative solution and deduce that $x_{1}=x_{2}$ as desired.

Now we need to show that g is surjective. That is, we must show that every element $y \in[3, \infty)$ is the image of some element $x \in[0, \infty)$ by g. That is, given $y \in[3, \infty)$ we need to show that there exists an $x \in[0, \infty)$ so that $g(x)=y$. So, lets see if we can solve for it.

$$
\begin{aligned}
g(x) & =y \\
\Rightarrow 3 x^{2}+3 & =y \\
\Rightarrow 3 x^{2} & =y-3 \\
\Rightarrow x^{2} & =\frac{y-3}{3} \\
\Rightarrow x & = \pm \sqrt{\frac{y-3}{3}}
\end{aligned}
$$

So, $x \in[0, \infty)$ provided the term under the radical is positive. We need only verify that we are not trying to take the square root of a negative number. Remember $y \in[3, \infty)$, so $y \geq 3$. Therefore, $y-3 \geq 0$ and so the fraction $(y-3) / 3 \geq 0$ and we can take the square root. So, there is an element $x \in[0, \infty)$ so that $g(x)=y$ and, since y was arbitrary, it follows that g is surjective.

We have shown that the function g is both injective and surjective. So, we have shown that it is bijective and we have finished the proof.

