
Name: Chad Mullikin
Test 1

Spring 2003
CS/MATH 2610
February 6, 2003

Directions : You have 75 minutes to complete all 6 problems on this exam.
There are a possible 100 points to be earned. You may not use your book or any
notes. Please be sure to show all pertinent work.An answer with no work will
receive very little credit!If any portion of the exam is unclear please come to me
and I will elaborate provided I can do so without giving away the problem.
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(1) (20 points)
Answer each of the following questions.

(a) Define a proposition.

A proposition is a declarative statement that is either true or false, but
not both.

(b) What does it mean for two propositionsP andQ to be logically equiv-
alent?

Two propositionsP andQ are equivalent provided they are either both
true or both false. I.e., their truth tables agree.

(c) What is the negation of the statement∀x∃y(P (x, y) → Q(x, y))?

∀x∃y(P (x, y) → Q(x, y)) ≡ ∃x∀y(P (x, y)∧ ∼ Q(x, y))

(d) Let A andB be sets. DefineA×B.

A × B = {(a, b) | (a ∈ A) ∧ (b ∈ B)}, that is the set of all ordered
pairs(a, b) wherea is an element ofA andb is an element ofB.

(e) Let A = {1, 2, 3} what isP(A)? List the elements. (P(A) denotes
the power set ofA.)

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
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(2) (14 points)
Let P , Q, andR be propositions. Prove or disprove that(P → Q) → R

andP → (Q → R) are logically equivalent.

Solution : This is false. We can show that it is false by either coming up
with a counter example, or showing that the truth tables don’t agree. Since
I suspect that most folks went ahead and tried to use a truth table, that’s
what I will do.

P Q R P → Q Q → R (P → Q) → R P → (Q → R)
T T T T T T T
T T F T F F F
T F T F T T T
T F F F T T T
F T T T T T T
F T F T F F T
F F T T T T T
F F F T T F T

Their truth tables don’t agree, so they are not equivalent. Looking at the
truth table also gives us the desired contradiction. Notice that,

(F → T ) → F ≡ F butF → (T → F ) ≡ T.

For what it’s worth, they only differ at one other place,

(F → F ) → F ≡ F butF → (F → F ) ≡ T.
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(3) (16 points)
Use Venn diagrams to sketch the following sets.

(a) A ∩ (
B ∩ C

)

A

BC

FIGURE 1. A ∩ (B ∩ C)

(b) [(A ∩B) ∪ (B ∩ C) ∪ (C ∩A)]− (A ∩B ∩ C)

A

BC

FIGURE 2. [(A ∩B) ∪ (B ∩ C) ∪ (C ∩A)]− (A ∩B ∩ C)
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(4) (15 points)
Let n be an integer. Prove that if7n + 2 is even, thenn is even.

You will probably observe that a direct approach is not too fruitful. Let’s
see what happens if we try it. Assume that7n + 2 is even and we want to
show then thatn is even. Since7n + 2 is even we know there exists some
integerk so that7n + 2 = 2k. So, we try to solve forn to show that it is
also some multiple of 2. We obtainn = 2[(k − 1)/7]. We have no idea
that this is an integer! What ifk− 1 isn’t divisible by 7? So, this approach
will not work. Let’s try proof by contradiction.

Proof. Suppose that7n + 2 is even and thatn is odd (here we negated the
p → q statement to obtainp∧ ∼ q which we will show is always false).
Sincen is odd we know that there is an integerk so thatn = 2k +1. Then
computation shows us,

7n + 2 = 7(2k + 1) + 2 = 14k + 9 = 2(7k + 4) + 1.

Since7k +4 is an integer we deduce that7n+2 is odd, a contradiction.
So our negated statement is always false. Hence, its negation is always
true. So, If7n + 2 is even, thenn is even. (We showed that∼ (p → q) ≡
p∧ ∼ q ≡ F , therefore(p → q) ≡∼ (∼ (p → q)) ≡∼ F ≡ T .) This
completes the proof.

¤
Proof by method of contrapositve works just as well. Remember that

the statementp → q is logically equivalent to∼ q →∼ p. So, lets try to
prove directly the contrapositive statement “ifn is odd, then7n+2 is odd.”

Proof. Assume thatn is odd. Then there exists ak ∈ Z so thatn = 2k+1.
Then, direct computation shows that

7n + 2 = 7(2k + 1) + 2 = 14k + 9 = 2(7k + 4) + 1.

Sincel = 7k + 4 is an integer and7n + 2 = 2l + 1 we have shown
that 7n + 2 is odd. So, the contrapositive statement must be true. This
completes the proof. ¤
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(5) (20 points)
LetA, B, andC be sets. Prove thatA∩(

B ∩ C
)

=
(
A ∩B

)∪(
A ∩ C

)
by showing each side is a subset of the other side.(Just drawing a Venn di-
agram is not a proof.)

Proof. We already have a picture ofA∩(
B ∩ C

)
and so drawing the Venn

diagram for the other side should make you believe that the statement is
true. To prove it we need to show

(1) A ∩ (
B ∩ C

) ⊆ (
A ∩B

) ∪ (
A ∩ C

)
and

(2)
(
A ∩B

) ∪ (
A ∩ C

) ⊆ A ∩ (
B ∩ C

)
.

So, lets start with proving (1). Letx ∈ A ∩ (B ∩ C). Then we know
thatx ∈ A andx ∈ (B ∩ C). Sincex ∈ (B ∩ C) we know thatx is not
an element ofB ∩ C. So, this says that eitherx /∈ B or x /∈ C. There are
two cases. Ifx /∈ B thenx ∈ B and sox ∈ A ∩ B. So, I can say that
x ∈ (A∩B)∪D whereD is any set in the world since we knowx ∈ A∩B.
Let D = A ∩ C. Then we have shown thatx ∈ (A ∩ B) ∪ (A ∩ C). In
the other case, suppose thatx /∈ C. Then we know thatx ∈ C and so
x ∈ A ∩ C. So, it follows again thatx ∈ E ∪ (A ∩ C) whereE is any
set in the world. So, letE = A ∩ B. Then we have shown (again) that
x ∈ (A ∩ B) ∪ (A ∩ C). Sincex ∈ B ∩ (A ∩ C) was arbitrary it follows
thatA ∩ (B ∩ C) ⊆ (A ∩B) ∪ (A ∩ C).

We still need to show (2) is true. So, suppose thatx ∈ (A∩B)∪(A∩C).
Then eitherx ∈ A ∩B or x ∈ A ∩ C. First let’s suppose thatx ∈ A ∩B.
Then we know thatx ∈ A andx /∈ B. Note that ifx /∈ B thenx /∈ B ∩G
whereG is any set in the world. So,x ∈ A andx /∈ B ∩ G. SinceG
is allowed to be any set in the world, letG = C. Then we have shown
thatx ∈ A andx /∈ B ∩ C. Hencex ∈ A ∩ (B ∩ C). The other case is
similar. Suppose thatx ∈ A∩C. Thenx ∈ A andx /∈ C. So, by a similar
argument as before,A /∈ C impliesA /∈ B∩C. So,x ∈ A andx /∈ B∩C.
Hencex ∈ A ∩ (B ∩ C). In either case we have shown that the arbitrary
elementx ∈ (A ∩ B) ∪ (A ∩ C) also had to live inA ∩ (B ∩ C). So, it
follows that

(
A ∩B

) ∪ (
A ∩ C

) ⊆ A ∩ (
B ∩ C

)
as desired.

We have shown that both (1) and (2) are true. So, by definition of equal-
ity for sets, this shows thatA ∩ (

B ∩ C
)

=
(
A ∩B

) ∪ (
A ∩ C

)
and we

have completed the proof. ¤
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(6) (15 points)
Let g : [0,∞) −→ [3,∞) be defined by

g(x) = 3x2 + 3.

Prove thatg is bijective. (Drawing a picture is not sufficient.)

Proof. We need to show that the functiong is both injective and surjective.
Let’s begin with injectivity.

We need to show that for allx1, x2 ∈ [0,∞), if g(x1) = g(x2), then
x1 = x2. So, letx1 andx2 be arbitrary elements of[0,∞) and assume that
g(x1) = g(x2). Then we know that3x2

1 + 3 = 3x2
2 + 3. So,

3x2
1 + 3 = 3x2

2 + 3

⇒ 3x2
1 = 3x2

2

⇒ x2
1 = x2

2

⇒ x1 = ±x2

But, x1 andx2 are elements of[0,∞) so,x1 ≥ 0 andx2 ≥ 0. So, we
can ignore the negative solution and deduce thatx1 = x2 as desired.

Now we need to show thatg is surjective. That is, we must show that
every elementy ∈ [3,∞) is the image of some elementx ∈ [0,∞) by g.
That is, giveny ∈ [3,∞) we need to show that there exists anx ∈ [0,∞)
so thatg(x) = y. So, lets see if we can solve for it.

g(x) = y

⇒ 3x2 + 3 = y

⇒ 3x2 = y − 3

⇒ x2 =
y − 3

3

⇒ x = ±
√

y − 3
3

So,x ∈ [0,∞) provided the term under the radical is positive. We need
only verify that we are not trying to take the square root of a negative num-
ber. Remembery ∈ [3,∞), soy ≥ 3. Therefore,y − 3 ≥ 0 and so the
fraction (y − 3)/3 ≥ 0 and we can take the square root. So, there is an
elementx ∈ [0,∞) so thatg(x) = y and, sincey was arbitrary, it follows
thatg is surjective.

We have shown that the functiong is both injective and surjective. So,
we have shown that it is bijective and we have finished the proof. ¤


