
(5 points) Name: Chad Mullikin

Test 3
Spring 2003

CS/MATH 2610
April 10, 2003

Directions : You have 75 minutes to complete all 6 problems on this exam. There are a
possible 100 points to be earned. You may not use your book or any notes. Please be sure
to show all pertinent work.An answer with no work will receive very little credit!If any
portion of the exam is unclear please come to me and I will elaborate provided I can do so
without giving away the problem.
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(1) (20 points)
(a) State the well ordering principle.

(b) State the principle of mathematical induction.

(c) State the binomial theorem.

(d) State the generalized pigeonhole principle.

(e) What are the formulas forP (n, k) andC(n, k) (wheren ≥ k)?

Solution :

(a) Every nonempty set of nonnegative integers has a least element.

(b) If S is any subset of nonnegative integers so that the following two conditions
hold:

1) 1 ∈ S.

2) If n ∈ S, thenn + 1 ∈ S.

Then,S = N.

(c) Let x andy be variables, and letn be a nonnegative integer. Then,

(x + y)n =
n∑

j=0

(
n
j

)
xn−jyj .

(d) If N objects are placed intok boxes, then there is at least one box containing
at leastdN/ke objects.

(e)

P (n, k) =
n!

(n− k)!

C(n, k) =
n!

k!(n− k)!
.
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(2) (15 points)
Prove that1 + 5 + 9 + · · ·+ (4n− 3) = n (2n− 1) for all n ∈ N.

Solution : We will proceed using the principle of mathematical induction.
First, define

S = {n ∈ N|1 + 5 + 9 + · · ·+ (4n− 3) = n (2n− 1)} .

Then, we only need to show thatS = N. To do this, note that the principle of
mathematical induction asserts that it is sufficient to show two things. Specifically,
we need to show

(Base Case) 1)1 ∈ S, and

(IHOP Case) 2) ifn ∈ S, thenn + 1 ∈ S.

So, we begin with the base case. To show that1 ∈ S, we need to show that
1 ∈ N and that1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1) holds whenn = 1.
Certainly1 ∈ N sinceN = {1, 2, 3, . . .}. Moreover, whenn = 1 the equation in
question becomes1 = 1(2 · 1− 1), which is true. Therefore1 ∈ S.

Next we begin step two. Let us make the induction hypothesis (IHOP). Assume
thatn ∈ S, that is assume1 + 5 + 9 + · · · (4n− 3) = n(2n− 1). Then we wish
to use this assumption to prove thatn + 1 ∈ S, which is to say1 + 5 + 9 + · · ·+
(4n− 3) + (4(n + 1)− 3) = (n + 1)(2(n + 1)− 1). To do this we will show that
the left side of the equation can be made to reduce to the right side of the equation
with the (IHOP) assumption. Indeed,

LS = 1 + 5 + 9 + · · ·+ (4n− 3) + (4(n + 1)− 3)

= [1 + 5 + 9 + · · ·+ (4n− 3)] + (4(n + 1)− 3)

= n(2n− 1) + (4(n + 1)− 3) (by (IHOP))

= 2n2 − n + 4n + 4− 3

= 2n2 + 3n + 1.

Now, lets see if we can get the right side to be equal to the left side.

RS = (n + 1)(2(n + 1)− 1)

= (n + 1)(2n + 2− 1)

= (n + 1)(2n + 1)

= 2n2 + 3n + 1.

So, we have shown that the left side of the equation is equal to the right side,
provided that we assume (IHOP). That is, we have proven that ifn ∈ S, then
n + 1 ∈ S. So, by the principle of mathematical induction we have shownS = N
as desired.
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(3) (15 points)
Let A = {1, 2, 3, . . . , n} and letB = {0, 1, 2}.

(a) How many functionsf : A −→ B exist?

(b) How many injective functionsg : A −→ B exist?

(c) How many functionsh : A −→ B exist providedh(1) 6= 2 andh(n) 6= 0?

Solution :
(i) There are exactly three choices forf(1), for each of those initial choices

there are three choices forf(2), ..., for each of the previous choices of
f(1) throughf(n−1) there are three choices forf(n). So, by the mul-
tiplication principle, there are3n possible functions. This question is
no different than asking how many passwords of lengthn exist if there
are only three characters allowed.

(ii) There are exactly 0 injective functions whenevern ≥ 4. If n = 3, then
there are three places to choose from forg(1) which leaves two places
to choose forg(2) and then exactly one possibility forg(3) for a total
of 3 · 2 · 1 = 6 possible injective functions whenn = 3. If n = 2, then
there are three choices forg(1) and two choices forg(2) for a total of
6 possible injective functions again. Finally, ifn = 1, then there are
three injective functionsg(1) = 0, g(1) = 1, andg(1) = 2.

(iii) First notice that there are no restrictions onh(2), h(3), . . . , h(n − 1).
So, there are3n−2 possible ways to fill in these values since there are
n − 2 positions to fill and each position has three possible values 0, 1,
or 2. Now, for each way we have to fill the center elements there are
two choices forh(1) (specificallyh(1) = 0 andh(1) = 1) and two
choices forh(n) (specificallyh(n) = 1 andh(n) = 2). So, using the
multiplication principle again we see that there are a total of2 ·3n−2 ·2
such functions.
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(4) (15 points)
Show that if there are 100,000,000 persons employed in the U.S. who earn less

than $1,000,000 in a given year, then there are at least two people that earned the
same amount of money, to the penny, in that year.

Solution : If we have 100,000,000 folks and each one of them earned less than
$1,000,000, then we know that each person earned less than 100,000,000 pennies.
So, with the assumption that everyone earned at least 1 penny, it follows that there
must be two people that earned the same amount, to the penny, according to the
pigeonhole principle. Indeed, let each person represent a distinct ball and let each
bin be described by the number of pennies people earn. Then, we see that we have
100,000,000 balls that we are trying to stick in 99,999,999 (since everyone earned
lessthan $1,000,000 they earned at most $999,999.99). We have one more ball
than we have bins, so we have to double up somewhere. So, there is at least one
bin (representing a specific amount of pennies) that holds two people. Those two
people earned the same amount of money, to the penny, last year.
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(5) (15 points)
What is the coefficient of the termx28y72 in the expansion of(x + y)100? Jus-

tify your answer with a combinatorial proof.

Solution : The coefficient should be exactly

C(100, 28) =
(

100
28

)
=

100!
28!(100− 28)!

.

The fact that the coefficient is equal to the number of ways to choose 28 el-
ements out of 100 can be see in the following way. If we were to write out the
product

(x + y)100 = (x + y)(x + y)(· · · )(x + y)
then we need to think of how many ways we can get terms that have the product
x28y72. Each time we obtain one of these terms, it must have come from choosing
x from exactly28 of the (x + y) terms above, of which there are 100. So, it
follows that we need to know the number of ways we can select28 of the(x + y)
terms to pull anx out of. This is exactlyC(100, 28). Notice that we could have
counted they’s instead to obtain the coefficientC(100, 72) which is no different
thanC(100, 28) according to the identityC(n, k) = C(n, n− k).



7

(6) (15 points)
In how many ways can the symbols{A,B,C, D,E, F} be arranged provided

that we insist that the symbolA come before the symbolC?

Solution : (The slick way that some of you thought to solve the problem.)
There are a total ofP (6, 6) = 6! ways to organize the symbols{A,B, C,D, E, F}.
Exactly half of these are configurations in whichA comes beforeC (it either does
or doesn’t, not both). Therefore, the total number of ways to arrange these six
symbols so thatA appears beforeC is 6!/2 = 360.

(The non-slick way that I used to solve the problem).
Alternatively , there is another way to count the possible configurations. The letter
A can appear in any one of 6 positions. IfC must come afterA, then we can de-
scribe the situation as follows. IfA is in the first position, thenC can be in any of
the remaining 5 positions, lets denote this is (A, , , , , ). Then, the letterC
can be in any of these positions and the remaining four can be filled up inP (4, 4)
different ways. This gives us a total of1 · 5 · P (4, 4) ways to arrange the symbols
whenA appears in the first position.
If A appears in the second position, then we are in the scenario that looks like (X,
A, , , , ), where theX denotes a position thatC cannot be in. So,C can
appear in any of the remaining 4 positions and the last 4 letters can be put down
in any remaining position in a total ofP (4, 4) ways again. So, the total number of
configurations in whichA appears in the second spot will be1 · 4 · P (4, 4).

Similarly, there are1·3·P (4, 4) possible configurations of the form (X, X, A,
, , ) (whereA is in the third spot), there are1 ·2 ·P (4, 4) possible configurations
of the form (X, X, X, A, , ), there are1 · 1 · P (4, 4) possible configurations
of the form (X, X, X, X, A, ), and finally, ifA is in the last spot (X, X, X,
X, X, A) then there is no place to putC so there are no configurations whereA
is the last element. Adding all of these cases up (which are distinct becauseA is
in a different position in each case) we obtain the number,

1 · 5 · P (4, 4) + 1 · 4 · P (4, 4) + 1 · 3 · P (4, 4)

+ 1 · 2 · P (4, 4) + 1 · 1 · P (4, 4) + 1 · 0 · P (4, 4)
= 5! + 4 · 4! + 3 · 4! + 2 · 4! + 4!

= (15)4! = 15 · 24 = 360.


