(1 point) Name: Chad A.S. Mullikin

Test 2 Spring 2005 CS/MATH 2610 March 10, 2005

Directions : You have 75 minutes to complete all 7 problems on this exam. There are a possible 100 points to be earned. You may not use your book or any notes. Please be sure to show all pertinent work. *An answer with no work will receive very little credit!* If any portion of the exam is unclear please come to me and I will elaborate provided I can do so without giving away the problem.

(1) (20 points)

Let $a, b, m \in \mathbb{Z}$ with m > 0. Answer each of the following questions.

(a) Define what it means to say f(x) is O(g(x)).

Solution : f(x) is O(g(x)) provided there exist constants C and k so that $|f(x)| \le C|g(x)|$ whenever x > k.

(b) What is the decimal expansion of the base b number $a_k a_{k-1} \dots a_1 a_0$?

Solution : $a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b^1 + a_0 b^0$

(c) Define the statement $a \mid b$.

Solution : $a \mid b$ provided there exists and integer k so that b = ak.

(d) What does it mean to say the integers a_1, a_2, \ldots, a_n are pairwise prime?

Solution : The integers a_1, a_2, \ldots, a_n are pairwise prime provided $gcd(a_i, a_j) = 1$ whenever $i \neq j$.

(e) Define the statement $a \equiv b \pmod{m}$.

Solution : $a \equiv b \pmod{m}$ provided there exists an integer q so that a = qm + b.

2

(2) (10 points)

Prove that f(x) is O(x) where

$$f(x) = \frac{2x^3 + 2x^2 + 2}{x^2 + x + 1}.$$

Solution : We are to find constants C and k so that $|f(x)| \le C|x|$ whenever x > k. The witnesses C = 2 and k = 1 will work. Indeed,

$$2|x| = \left| 2x \left(\frac{x^2 + x + 1}{x^2 + x + 1} \right) \right|$$

= $\left| \frac{2x^3 + 2x^2 + 2x}{x^2 + x + 1} \right|$
 $\ge \left| \frac{2x^3 + 2x^2 + 2}{x^2 + x + 1} \right|$ (since $2x \ge 2$ when $x > 1$)
 $= |f(x)|$.

(3) (9 points)

Find the following products in the indicated bases without converting into decimal. You can, of course, convert into decimal to check your answer, but I would like to see the work done in the indicated bases.

(a) (Base 16)	
	6AF
	$\times AF$
Solution :	
	491A1

(b) (Base 3)	
(-) ()	2110
	$\times 102$
Solution :	
	222220

(c) (Base 10)	1024
Solution :	$\times 512$
	524288

4

(4) (15 points)

Use the Euclidean Algorithm to compute gcd(159, 216). (You will receive very few points if you do not use the Euclidean Algorithm).

Solution :

 $\begin{aligned} 216 &= 159(1) + 57\\ 159 &= 57(2) + 45\\ 57 &= 45(1) + 12\\ 45 &= 12(3) + 9\\ 12 &= 9(1) + 3\\ 9 &= 3(3) + 0. \end{aligned}$

Since 3 was the last nonzero remainder, it is the greatest common divisor.

(5) (15 points)

Prove that if $a, b, c \in \mathbb{Z}$ so that $a \mid b$ and $a \mid (b + c)$, then $a \mid c$.

Solution : We will prove this directly. Assume that $a, b, c \in \mathbb{Z}$ so that $a \mid b$ and $a \mid (b + c)$. Then, by the definition of divide we know that there exist constants m and n so that b = an and (b + c) = am. Substituting the first equation into the second shows us (an + c) = am. Solving this equation for c completes the proof. Indeed, c = am - an = a(m - n). Since $m - n \in \mathbb{Z}$ it follows immediately that $a \mid c$.

6

(6) (15 points)

Is there an integer x that leaves a remainder of 2 when divided by 4, leaves a remainder of 3 when divided by 5, and also leaves a remainder of 5 when divided by 9? If so why? (You can cite a theorem.) If there is more than one such number, what are they?

Solution : The Chinese Remainder theorem guarantees a solution since 4, 5, and 9 are pairwise relatively prime. The solution will be

$$\begin{aligned} x &= 2(5)(9)(\overline{5}_4)(\overline{9}_4) + 3(4)(9)(\overline{4}_5)(\overline{9}_5) + 5(4)(5)(\overline{4}_9)(\overline{5}_9) \\ &= 2(5)(9)(1)(1) + 3(4)(9)(4)(4) + 5(4)(5)(7)(2) \\ &= 90 + 1728 + 1400 \\ &= 3218. \end{aligned}$$

This is just one of the solutions. There are infinitely many since the solutions are given modulo $4 \cdot 5 \cdot 9$. So, all solutions are of the form

3218+180k

where k is any integer.

(7) (15 points)

Use mathematical induction to prove this formula for the sum of a finite number of terms of a geometric progression:

$$a + ar + ar^{2} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r-1}$$
, where $r \neq 1$.

Solution : Let P(n) be the proposition

$$P(n) \equiv \left(a + ar + ar^2 + \dots + ar^n = \frac{ar^{n+1} - a}{r-1}, \text{ where } r \neq 1\right)$$

First we will establish the base case P(0). When n = 0 we have

$$\frac{ar^{0+1}-a}{r-1} = \frac{ar-a}{r-1} = a\frac{r-1}{r-1} = a$$

as it should. This finishes the base case.

Now, assume $P(n) \equiv T$ and we will use this to try to deduce that P(n+1) is also true. Using the fact that P(n) is true we see that

$$a + ar + ar^{2} + \dots + ar^{n} + ar^{n+1} = \frac{ar^{n+1} - a}{r - 1} + ar^{n+1}$$
$$= \frac{ar^{n+1} - a}{r - 1} + \frac{ar^{n+1}(r - 1)}{r - 1}$$
$$= \frac{ar^{n+1} - a + ar^{n+2} - ar^{n+1}}{r - 1}$$
$$= \frac{ar^{(n+1)+1} - a}{r - 1}.$$

This finishes the induction since we have shown P(n + 1) to be true.