
(1 point) Name: Chad A.S. Mullikin

Test 3
Spring 2005

CS/MATH 2610
April 7, 2005

Directions : You have 75 minutes to complete all 7 problems on this exam. There are a
possible 100 points to be earned. You may not use your book or any notes. Please be sure
to show all pertinent work.An answer with no work will receive very little credit!If any
portion of the exam is unclear please come to me and I will elaborate provided I can do so
without giving away the problem.
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(1) (20 points)
Let k, n, r ∈ Z with n > k. Answer each of the following questions.

(a) State the Product Rule.

Solution : Suppose that a procedure can be broken down into a sequence of
two tasks. If there aren1 ways to do the first task andn2 ways to do the
second task after the first task has been done, then there aren1n2 ways to do
the procedure.

(b) State the Pigeonhole Principle.

Solution : If k + 1 or more objects are placed intok boxes, then there is at
least one box containing two or more of the objects.

(c) State the Binomial Theorem.

Solution : Let x andy be variables, and letn be a nonnegative integer. Then

(x + y)n =
n∑

j=0

(
n
j

)
xn−jyj

=
(

n
0

)
xn +

(
n
1

)
xn−1y + · · · +

(
n

n − 1

)
xyn−1 +

(
n
n

)
yn.

(d) Define anr-combination.

Solution : An r-combination of elements of a set is an unordered selection
of r elements from the set.

(e) Why is

(
n
k

)
=

(
n

n − k

)
?

Solution : If we pull k elements out of a bag that containedn elements, then
there are exactlyn − k elements left in the bag. So, we can countk element
subsets of a set withn elements while simultaneously counting the number
of n − k element subsets of a set withn elements.
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(2) (10 points)
You, Wil Wheaton, Brent Spiner, and Michael Dorn are playing a game of cards

using a standard 52 card deck. What is the total number of ways to deal five cards
to all four of you? That is, how many different ways can we distribute twenty
cards to four people where each person gets five cards.

Solution : There are a couple of solutions to this problem that I saw that were
correct. The first is the one from the book. There are 52 cards in the deck and

the first person receives 5 of those cards in one of

(
52
5

)
ways. Then, the second

person gets a different set of 5 cards from the remaining 47 cards in one of

(
47
5

)
different ways. Continuing in this fashion, and using the product rule, we see that
number of possible deals is(

52
5

) (
47
5

) (
42
5

) (
37
5

)
= 1, 478, 262, 843, 475, 644, 020, 034, 240.

A second solution is to first determine the number of ways we can obtain the

20 cards that will be distributed to the players. There are

(
52
20

)
different ways to

select these 20 cards. Then, the first person is dealt 5 of these 20 cards in one of(
20
5

)
different ways. Then, the second person gets 5 of the remaining 15 cards in

one of

(
15
5

)
different ways. Combining these data using the product rule, we see

that the total number of ways to deal out the cards is(
52
20

) (
20
5

) (
15
5

) (
10
5

) (
5
5

)
= 1, 478, 262, 843, 475, 644, 020, 034, 240.

Neat! We have just given a combinatorial proof of the identity,(
52
5

) (
47
5

) (
42
5

) (
37
5

)
=

(
52
20

) (
20
5

) (
15
5

) (
10
5

) (
5
5

)
.

Huzzah!
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(3) (9 points)
How many one-to-one functions are there from the set{1, 2, 3, 4, 5, 6, 7, 8, 9}

into the set{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Solution : We need only describe what the function does to each element in the

domain{1, 2, 3, 4, 5, 6, 7, 8, 9}. We can send the valie1 to any of the ten values in
the co-domain. Once we have made this choice, our only restriction on where we
send the domain value of2 is that we not send it to the same place. So, that leaves
any 1 of 9 choies remaining. We an send the domain value of 3 to any one of the
now eight remaining values in the o-domain. Continuing this reasoning and using
the product rule we see that the total number of injective functions is

10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 = 3, 628, 800.
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(4) (15 points)
Supposex1, x2, x3, andx4 are non-negative integers. How many solutions are

there to the equation

x1 + x2 + x3 + x4 = 9.

Solution : This is a Lincoln LogTM problem! Imagine that we have 4 bins, one
for x1, one forx2, one forx3, and one forx4. We now need to define where the
borders of these bins are. This is where we use the Lincoln LogsTM . We have
9 stars laid out in a row. If we place the three Lincoln LogsTM down then this
will define where the bins are. For example, below the placement of the Lincoln
LogsTM gives us the solutionx1 = 2,x2 = 1, x3 = 4, andx4 = 2.

∗ ∗ | ∗ | ∗ ∗ ∗ ∗| ∗ ∗
So, we have reduced the problem to determining how many ways we can put

down the Lincoln LogsTM . We have a set of 12 positions total to fill,9 stars and3
Lincoln LogsTM . We need to select 3 of these 12 positions for the Lincoln LogsTM .

This can be done in one of

(
12
3

)
different ways. Therefore, the total number of

solutions to the above equation is

(
12
3

)
= 220.



6

(5) (15 points)
Show that among any group of twenty six (not necessarily consecutive) inte-

gers, there are two with the same remainder when divided by 25.

Solution : When dividing by 25, the possible remainders are 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24. There are only
25 possible remainders. So, if we have a group of 26 numbers and we divide each
of them by 25 we will have a set of 26 remainders. By the Pigeonhole principle,
at least two of these remainders must be equal.
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(6) (15 points)
Prove that ifn andk are positive integers withn ≥ k, then(

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)
.

Solution : This is Pascal’s Identity. Since I didn’t require the proof to be done
combinatorially (it’s in the book on page 320) I will do the proof algebraically.(

n
k − 1

)
+

(
n
k

)
=

n!
(k − 1)!(n − (k − 1))!

+
n!

k!(n − k)!

=
n!k

k!(n − (k − 1))!
+

n!(n − (k − 1))
k!(n − (k − 1))!

=
n!(k + (n − (k − 1))

k!(n − (k − 1))!

=
n!(n + 1)

k!((n + 1) − k)!

=
(n + 1)!

k!((n + 1) − k)!

=
(

n + 1
k

)
.
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(7) (15 points)
Use a combinatorial proofto show that ifn is a nonnegative integer, then(

2n
n

)
=

n∑
k=0

(
n
k

)2

. [Hint: (1)(e).]

Solution : Using the hint I will rewrite the claim as follows(
2n
n

)
=

n∑
k=0

(
n
k

) (
n

n − k

)
.

Once we have written the claim in this form it becomes more apparent that this
is a special case of Vandermonde’s Identity. So, the combinatorial proof will be
similar (identical) to the proof of Vandermonde’s Identity.

Suppose we had a bag containing 2n elements. Suppose we divided this bag
into two smaller bagsA andB which each containn elements. On the left hand
side of the claim we see that this number is the number ofn elements subsets from
the bag with2n elements. So, how can we count the same thing and end up with
the expression on the right. Well, suppose we have an arbitraryn element subset
of the bag with2n elements. It either has an element fromA in it or it doesn’t.
So, we can count the number ofn element subsets contained in the bag with2n
elements by counting the number ofn element subsets that have0 elements from
A, 1 element fromA, 2 elements fromA, . . ., n − 1 elements fromA, or all n
elements fromA and adding them up. Since the cases cannot occur simultaneously
(we can’t have ann element subset that contains exactly 3 elements fromA while
containing exactly7 elements fromA) we see that we do not need to worry about
inclusion-exclusion. Now, how many ways can we have ann element subset that
has no elements inA? Well, that means that I have chosen 0 elements fromA, a

set containingn elements. I can do this

(
n
0

)
different ways. For each of these

choices, I can select then remaining elements of the set fromB, a set withn

elements, in

(
n
n

)
different ways. So, the total number ofn element subsets from

the bag that contains2n elements which has no elements fromA is

(
n
0

) (
n
n

)
.

Now, how manyn element subsets have one element fromA andn − 1 elements

from B. Well, there is

(
n
1

)
different ways to choose the ne element fromA. For

each of these choices, there is

(
n

n − 1

)
different ways to choose the remaining

n − 1 elements fromB. This gives us

(
n
1

) (
n

n − 1

)
differentn element subsets

that contain exactly one element fromA.
Continuing to the general case, we want to know how many ways we can get ann
element subset that containsk elements fromA andn− k elements fromB. This

number is exactly

(
n
k

) (
n

n − k

)
. Adding all of these cases up we complete the
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proof(
2n
n

)
=

(
n
0

) (
n
n

)
+

(
n
1

) (
n

n − 1

)
+ cdots

(
n
k

) (
n

n − k

)
+ cdots +

(
n
n

) (
n
0

)

=
n∑

k=0

(
n
k

) (
n

n − k

)

=
n∑

k=0

(
n
k

)2

.


