
Some Proof Techniques

There are many different techniques that can be used to prove a state-
ment. While they are each equally worthy of proving a statement, some
may be easier to use than others in a given scenario. Below is a list of sev-
eral standard proof techniques that are commonly used to prove statements
along with some examples of a given technique in a action. Most of the
following exposition is taken directly from a book entitled,

A Transition to Advanced Mathematics(Third Edition) by Douglas Smith,
Maurice Eggen, and Richard St.Andre.

(1) Direct Proof :
Direct Proof of P ⇒ Q

AssumeP.

...

Therefore,Q.

Thus,P ⇒ Q.

Example : Supposex ∈ Z (that is,x is an integer). Prove that if
x is odd, thenx + 1 is even.

Proof. Assume thatx is odd.
Thenx = 2k + 1 for some integerk.
Thus,x + 1 = (2k + 1) + 1 = 2(k + 1) for some integerk.
Sincex+1 is twice the integerk+1, it follows thatx+1 is even. �

Example : If x andy are odd integers, thenxy is odd.

Proof. Assumex is odd andy is odd. Then, integersm andn exist
so thatx = 2m+1 andy = 2n+1. Thus,xy = (2m+1)(2n+1) =
4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1. Thusxy is an odd
integer. �
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(2) Contrapositive : Remember that we proved using truth tables that
the statementP ⇒ Q is logically equivalent to∼ Q ⇒∼ P . So, if
we want to prove the statementP =⇒ Q it suffices to use a direct
proof to prove∼ Q ⇒∼ P . It seems like this is a little bizarre but
it can beveryhelpful. Try to prove the example below directly and
notice that it is a lot more tricky than using the contrapositive proof.

Contraposition Proof of P ⇒ Q

Suppose∼ Q.

...

Therefore,∼ P (via a direct proof).

Thus, ∼ Q ⇒∼ P.

Therefore,P ⇒ Q.

Example : Let m be an integer. Prove that ifm2 is odd, thenm
is odd.

Proof. Suppose thatm is not odd. <Suppose∼ Q.> Thenm is
even. Thus,m = 2k for some integerk. Thenm2 = (2k)2 =
4k2 = 2(2k2). Sincem2 is twice the integer2k2 it follows thatm2

is even.<Deduce∼ P .> Thus, if m is even, thenm2 is even; so,
by contraposition, ifm2 is odd, thenm is odd. �

Example : If x andy are odd integers, thenxy is odd.

Proof. <To prove (x is odd∧ y is odd)⇒ xy is odd, we showxy
is even⇒ (x is even∨ y is even).> Assumexy is even. Thus, 2
is a factor ofxy. But since 2 is a prime number and 2 divides the
productxy, then either 2 dividesx or 2 dividesy. < We use a well-
known fact about the division of a product by a prime.> Thus, either
x is even ory is even. We have shown that ifxy is even then either
x is even ory is even. Thus, ifx andy are odd, thenxy is odd. �
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(3) Contradiction : Proofs by contradiction tend to have a similar feel
to a proof by contrapositive. The idea is that we want to prove some
statementR, so we show that the statement∼ R is always false.
Then, we have shownR ≡∼ (∼ R) =∼ (F ) = T .

Proof of R by contradiction

Suppose∼ R.

...

Therefore,S.

...

Therefore,∼ S.

Hence,S∧ ∼ S, a contradiction.

Thus,R.

I should take the time to note that many times the propositionR
will be an implication. In that case the we assume∼ (P ⇒ Q) and
deduce a contradiction. Recall that the negation of an implication is
∼ (P ⇒ Q) ≡ P∧ ∼ Q.

Example : Prove that
√

2 is an irrational number.

Proof. Suppose that
√

2 is a rational number.< Assume∼ P . >
Then

√
2 = s/t, wheres andt are integers. Thus,2 = s2/t2, and

2t2 = s2. Sinces2 andt2 are squares,s2 contains an even number
of 2′s as factors.<This is ourS statement.>, andt2 contains an
even number of2′s. But then2t2 contains an odd number of2′s as
factors. Sinces2 = 2t2, s2 has an odd number of2′s. <This is the
statement∼ S.> This is a contradiction. We conclude that

√
2 is

irrational. �

Example : If x andy are odd integers, thenxy is odd.

Proof. Supposex andy are odd andxy is even. Sincex andy are
odd, thenx = 2m + 1 andy = 2n + 1 for some integersm and
n. Thus,xy = (2m + 1)(2n + 1) = 2(2mn + m + n) + 1. Then
2(2mn+m+n) is even and the next integer2(2mn+m+n)+1 = xy
is even because we assumedxy was even. This is impossible since
there are no two consecutive integers that are both even. Because
the supposition thatxy leads to a contradiction, we conclude thatxy
is odd. �
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(4) Existential Statement : The most direct approach is to find an el-
ement that satisfies the statement. For example, to prove that the
number 4294967297 is not a prime to prove the statement there ex-
ists an nonzero integerx 6= 1 so thatx divides 4294967297. We can
prove this directly by noticing that4294967297 = 641 · 6, 700, 417.
That is we found anx (actually we found 2 suchx′s) that divides
4294967297. How did we get the number? Who knows, but we
found it. Many times a proof by contradiction is more helpful.

Proof of ∃xP(x) by contradiction

Suppose∼ (∃xP (x)).

Then,∀x ∼ P (x).

...

Therefore ,S∧ ∼ S, a contradiction.

Hence,∼ (∃xP (x)) is false; so∃xP (x) is true.

Example : Prove that the polynomialp(x) = x71−2x39 +5x−1
has a real zero.

Proof. Suppose that there is no suchx. By the fundamental theorem
of algebra we know that the polynomial has exactly 71 roots, some
may be complex roots and some may be real roots. It is a fact that
complex roots always come in pairs. That is ifa + bi is a root of
p(x) thena − bi must also be a root. SO, it there are no real roots
then that means that they must all be complex roots. Since they are
all complex roots, there must be an even number of roots. 71 ain’t
even so this is a contradiction. Therefore, there must be at least one
real root. �
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(5) Existential Implications :

Direct proof of ∃xP(x) ⇒ R

Assume∃xP (x).

Let t be an object such thatP (t) is true.
...

Therefore ,R.

Hence,∃xP (x) ⇒ R.

Example : If there exists a test score of yours that is a zero, then
you can not make an A in the course.

Proof. Suppose that one of your test grades is a zero. Then since
there are only three in class exams this means that your test average
is at most66.6̄%. Since your test average accounts for45% of your
grade this will only allow for(66.6̄)(0.45) = 30 points of your final
grade to come from tests instead of the maximum of 45. So, the
highest grade that could be earned is an85% which is not sufficient
for an A. �

This begs the use of some terminology we talked about at the be-
ginning of class that we have not used yet. Recall that a corollary is
in immediate result of a theorem. Many times corollaries are imme-
diate from the proof of a theorem, as is the case with the following,

Corollary 1. If your test average is less than or equal to66.6̄% you
can not earn an A.
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(6) Universal Proposition :

Direct proof of ∀xP(x)

Let x be any arbitrary element in the universe of discourse.

(The universe should be named or its objects described.)
...

Hence ,P (x) is true.

Sincex was arbitrary,∀xP (x) is true.

Example : For all even integersx its square,x2, is even.

Proof. Let x be any even integer. Thenx = 2k for somek. So,
x2 = (2k)2 = 4k2 = 2(2k2), sox2 is even. Since our choice of
even integer was arbitrary, we deduce that the square of any even
integer is an even integer. �
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(7) Universal Proposition (Contradiction) :

Proof of ∀xP(x) by contradiction.

Suppose∼ ∀xP (x).

Then∃x ∼ P (x).

Let t be an object such that∼ P (t).

...

Therefore,S∧ ∼ S.

Thus,∃x ∼ P (x) is false; so its denial∀xP (x) is true.
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(8) Uniqueness :

Proof of ∃!xP(x).

Prove that∃xP (x) is true by any methodfirst.

Then assume thatt1 andt2 are objects in the

universe such thatP (t1) andP (t2) are true.
...

Therefore,t1 = t2.

We conclude,∃!xP (x).

Example : The polynomialr(x) = x− 3 has a unique zero.

Proof. First, observe thatr(3) = 3− 3 = 0. So,3 is a zero ofr(x),
so we have shown that there exists a zero ofr(x). It remains to show
that there is a unique zero. So, suppose thatt1 andt2 are zeros of
r(x). Then,

r(t1) = 0 = r(t2)

⇒ r(t1) = r(t2)

⇒ t1 − 3 = t2 − 3

⇒ t1 − 3 + 3 = t2 − 3 + 3

⇒ t1 = t2.

Therefore,r(x) has a unique zero. �


