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Today | gave a heuristic proof stating the the cardinalityZof = {1,2,3,...} was the same
as the cardinality oZ = {...,—3,-2,-1,0,1,2,3,...}. 1 would now like to justify that claim
with a more rigorous proof. This will also serve as a good wapgrbvide an example on proofs
regarding injectivity and surjectivity.

Claim 1. |Z*| = |Z|.

Proof. To show that the cardinality of two setsand B are equal, it suffices to show that there
exists a bijectionf : A — B. Recall that a bijection is a function that is both inject{eae-to-
one) and surjective (onto). So, our goal for this proof wéltb find a bijectiory : Z* — 7Z. The
idea is just like we had in class. We can draw a picture to tifynith out what a possible function
may be.

Now let see if we can devise a closed form for this function sed if we can prove that it is
bijective. First, notice that all of the even numbers in thye tow are paired with positive numbers
on the bottom row while odd numbers are paired with negativelvers and zero. First, lets focus
on the even guys. We see tlat- 1,4 — 2,6 — 3, etc... So, it looks like any even numhi¥
will get sent tok. Let’s look at the odd guys now. We see that> 0,3 — —1,5 — —2,7 — —3
etc... An arbitrary odd number looks liR& + 1 and it looks like we want to send this odd number
to —k. So, it looks like the function we want is

fn) = k if n = 2k for somek
"= =k if n =2k + 1 for somek

You can check and see th#tl) = f(2(0) +1) = —0 = 0, f(2) = f(2(1)) = 1, f(3) =
f(2(1) + 1) = —1. Indeed, this function agrees with our picture above! Lets if we can prove
that it is a bijection. First we will show that it is injecti{ene-to-one). To see this first we must
recall the definition of one-to-one. A functighis one-to-one if and only if whenevé(z) = f(y)

it must also be true that = y. So, we will assume that we have some counting numbeursdy

in Z* so thatf(x) = f(y). Well, if f(x) = f(y) then eitherf(z) = f(y) <0, f(z) = f(y) =0,

or f(x) = f(y) > 0. So, we need to show that in any of these three possible dasest be true
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thatz = y.

Suppose firstthat(x) = f(y) < 0. Then we know that andy must both be odd numbers since
only odd numbers are sent to negative numbers. Therefere2k + 1 for somek andy = 2¢ + 1
for somel. We know thatf(xz) = f(y), and we can rewrite this &2k + 1) = f(2¢( + 1). By
the definition off we can extend this statement to say = f(2k + 1) = f(2¢ + 1) = —¢, which
tellsusk = ¢. Butif &k = ¢, then2k + 1 = 2¢ + 1 and sar = y.

The exact same argument works for the cA8e) = f(y) = 0 since only an odd number can be
sent to zero (the first even numliee Z* gets sent ter-1 and every other even number gets sent
to larger values). Indeed, ff(x) = f(y) =0, thenz =y = 1.

Finally suppose thaf(z) = f(y) > 0. Then we know that andy must be even. So = 2k for
somek andy = 2¢ for somel. Rewriting our assumption we hay&2k) = f(2¢) which implies
k = f(2k) = f(2¢) = ¢, and again we see that this must mean that y. We can now conclude
that f is one-to-one.

It remains only to show that is surjective. To do this recall that a functigh: A — B is
surjective if and only if for eaclh € B there is an element € A so thatf(a) = b. That is, in
our case, we need to make sure that every eleméntggts hit by some element ia* by f. So,
suppose thay is any element irfZZ. We need to cook up an elemenbf Z* so thatf(z) = y.
Again, there are three cases.

If y < 0, theny = (—1)k for some positive integet. Then letz = 2k + 1. By definition of f
we see thaf (z) = f(2k+1) = -k =y.

If y =, then letz = 1, sincef(1) = 0.
If y > 0, theny = ¢ for some positive integet. Then letr = 2¢. By definition of f we see that

f(z) = f(2¢) = ¢ = y. This complets the proof of the assertion tlias surjective. Since we had
shown previously thaf was injective, we can now say thAis bijective. ThudZ*| = |Z|. O



