MATH 2610 Discrete Mathematics for Computer Science Thursday April, 21 2005

(1) Solve the recurrence relations together with the initial conditions given.

- (a) $a_n = a_{n-1} + 6a_{n-2}$ for $n \ge 2, a_0 = 3, a_1 = 6$ (b) $a_n = 7a_{n-1} - 10a_{n-2}$ for $n \ge 2, a_0 = 2, a_1 = 1$
- (c) $a_n = 6a_{n-1} 8a_{n-2}$ for $n \ge 2, a_0 = 4, a_1 = 10$
- (d) $a_n = 2a_{n-1} a_{n-2}$ for $n \ge 2, a_0 = 4, a_1 = 1$
- (e) $a_n = a_{n-2}$ for $n \ge 2, a_0 = 5, a_1 = -1$
- (f) $a_n = -6a_{n-1} 9a_{n-2}$ for $n \ge 2, a_0 = 3, a_1 = -3$
- (g) $a_{n+2} = -4a_{n-1} + 5a_n$ for $n \ge 0, a_0 = 2, a_1 = 8$
- (2) The Lucas numbers satisfy the recurrence relation

$$L_n = L_{n-1} + L_{n-2},$$

and the initial conditions $L_0 = 2$ and $L_1 = 1$.

- (a) Show that $L_n = f_{n-1} + f_{n+1}$ for n = 2, 3, 4, ..., where f_n is the *n*th Fibonacci number.
- (b) Find an explicit formula for the Lucas numbers.
- (3) Find the solution to $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$ for $n = 3, 4, 5, \ldots$, with $a_0 = 3, a_1 = 6$, and $a_2 = 0$.
- (4) What is the general form of the particular solution of the linear nonhomogeneous recurrence relation a_n = 6a_{n-1} 12a_{n-2} + 8a_{n-3} + F(n) if
 (a) F(n) = n²?
 (b) F(n) = 2ⁿ?
 (c) F(n) = n2ⁿ?
 (d) F(n) = (-2)ⁿ?
 (e) F(n) = n²2ⁿ?
 (f) F(n) = n³(-2)ⁿ?
 (g) F(n) = 3?
- (5) Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 2n^2$. Now find the solution with initial condition $a_1 = 4$.
- (6) What beverage would you prefer (within reason) for the final exam? If coffee or tea, do you take cream and/or sugar?