
MATH 2200 Fall 2002
Homework 10

Selected Solutions

§ 4.2 # 28) Use a linear approximation L(x) to an appropriate function f(x),
with an appropriate value of a, to estimate

√
80.

Solution : The linear approximation is going to be a tangent line to the
function f(x) =

√
x at some point (a, f(a)). Since the tangent line has the

equation
L(x) = f ′(a)(x− a) + f(a)

we had better be able to evalute f(a) as well as f ′(a) and we want for a to be
as close to 80 as possible. Since,

f ′(x) =
1

2
√

x

we see that if we can compute
√

a all will be golden. I know that
√

81 = 9 and
81 is pretty close to 80, so define a = 81. Then the equation of the line becomes,

L(x) =
1

2
√

81
(x− 81) +

√
81 =

1
18

(x− 81) + 9 =
1
18

x +
9
2
.

So, our approximate value from sqrt80 is L(80) = 80/18 + 9/2 = 161/18 =
8.94.
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§ 4.3 # 22) Determine the intervals on the x-axis on which the given function
is increasing as well as those on which it is decreasing.

f(x) = x2e−2x

Solution : We want to know the intervals on which f ′(x) is positive and the
intervals on which f ′(x) is negative.

f ′(x) = 2xe−2x + x2(−2)e−2x = 2xe−2x (1− x)

The derivative is defined everywhere so the only critical points occur when
f ′(x) = 0. Thus the only critical points are x = 0 and x = 1. So, we need to
check the value of the derivative at some point less than zero, some point in
between zero and one, and some point greater than one since we know the only
place the derivative can possibly change sign is at the critical points.

f ′(−1) = 2(−1)e−2(−1) (1− (−1)) = −4e2 < 0

f

(
1
2

)
= 2

(
1
2

)
e−2( 1

2 )
(

1− 1
2

)
=

1
2
e−1 > 0

f(2) = 2(2)e−2(2) (1− 2) = 4e−4(−1) < 0

So, we see that f(x) is increasing on the interval (0, 1) and it is decreasing
on the intervals (−∞, 0) and (1,∞).

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–1 1 2 3 4

x

Figure 1: A plot of f(x) = x2e−2x on the interval (−1, 4).
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§ 4.3 # 42) Show that the equation e−x = x− 1 has exactly one solution in
the interval [1, 2].

Solution : Let f(x) = e−x− x + 1. Then we are to show that there exists
exactly one point c in [1, 2] so that f(c) = 0. Note that f(x) is a continuous
function on R, so it is continuous on [1, 2]. Therefore, by the intermedite value
theorem, to show that there exists at least one solution, it suffices to find points
a and b in [1, 2] so that f(a) < 0 and f(b) > 0. Let a = 2 and b = 1. Then,
f(a) = f(2) = e−2−2+1 = e−2−1 < 0, and f(b) = f(1) = e−1−1+1 = e−1 > 0.
So we know that there is at least one solution. To show that there is exactly
one solution it suffices to show that the function is either always increasing
or always decreasing on the interval [1, 2] since the only way there could be
another zero is if the function turned back around to run through the x-axis
again thus changing from increasing to decreasin or vice-versa. (Note the last
statement is really Rolle’s theorem, if there are two points c and d in [1, 2] so
that f(c) = f(d) = 0, then Rolle’s theorem tells us that there must be some
point in between c and d where the derivative vanishes. We will show that the
derivative is either always positive or always negative, thus it can never vanish
and so there can be no d so that f(d) = 0). To determine if the funcion is
always increasing or always decreasing, we compute the derivative:

f ′(x) = −e−x − 1.

Note that e−x is always positive, so −e−x is always negative. Thus f ′(x) =
−e−x−1 is always negative and so we see that the function is always decreasing.
Thus it can never turn back around to hit the x-axis again.
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§ 4.4 # 53) Show that, among all closed cylindrical cans with a given fixed
volume, the one with minimal total surface area has height equal to the diame-
ter of its base.

Solution : There are at least two ways to solve this problem. One solution
is the brute force technique, while the other involves a more clever approach.
Thanks much to those that showed me the clever approach. I will do both
starting with the brute force.

We want to show that if h is the height of the cylinder and r is its radius,
then h = 2r. If the fixed volume is V0 we have,

V0 = πr2h

and so we know that h = V0/(πr2). We want to minimize the surface area
equation

S = 2πrh + 2πr2.

Using the above information, we can write this as an equation involving one
variable.

S(r) = 2πr

(
V0

πr2

)
+ 2πr2 =

2V0

r
+ 2πr2.

To minimize this function we compute its derivative,

S′(r) = −2V0

r2
+ 4πr =

4πr3 − 2V0

r2

This isonly undefined at r = 0, but this is not in our interval of intersest
(0,∞) so we throw it out. The other critical point occurs when S′(r) = 0. So,
lets solve for that.

S′(r) = 0

⇒ 4πr3 − 2V0

r2
= 0

⇒ 4πr3 − 2V0 = 0

⇒ r3 =
2V0

4π

⇒ r =
V

1/3
0

(2π)1/3
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Ick. Now we need to solve for h and show that h = 2r. We know, from
above that h = V0/(πr2). So,

h =
V0

π

(
V

1/3
0

(2π)1/3

)2

=
V0

π

(
V

2/3
0

(2π)2/3

)

=
V0

π

(
(2π)2/3

V
2/3
0

)

=

(
V0

V
2/3
0

)(
π2/3

π

)(
22/3

1

)

=
22/3V

1/3
0

π1/3

=
(

2
2

)
22/3V

1/3
0

π1/3

= 2
V

1/3
0

(2π)1/3

= 2r.

One would hoe that there is an easier way to solve this problem. Sure enough,
there is. We can solve this problem using related rates. Suppose that we are
changing r and h with respect to time so that the volume remains constant.
Then we can write V0 = π(r(t))2h(t). Then taking a derivative with respect to
time we have,

0 = 2πr(t)r′(t)h(t) + π(r(t))2h′(t) = πr(t) (2r′(t)h(t) + r(t)h′(t)) .

Since we know that r(t) cannot be zero we know that we can divide both
sides of this equation by πr(t) obtaining,

0 = 2r′(t)h(t) + r(t)h′(t).

5



Furthermore, we know that we want to minimize the surface area which is
given by

S(t) = 2π(r(t))2 + 2πr(t)h(t)

and this minimum will occur when S′(t) = 0 since there are no boundaries
(again we are dealing with an open interval problem). So, we compute the
derivaitve,

S′(t) = 2π(2)r(t)r′(t)+2πr′(t)h(t)+2πr(t)h′(t) = 2π(2r(t)r′(t)+r′(t)h(t)+r(t)h′(t)).

We are interested in when S′(t) = 0, which occurs when 2r(t)r′(t)+r′(t)h(t)+
r(t)h′(t) = 0 (you can leave off the 2π since it will not affect when S′(t) = 0).
But recall that we have a clever formulation for 0 from the previous computation
0 = 2r′(t)h(t) + r(t)h′(t). So,

S′(t) = 0
⇒ S′(t) = 2r′(t)h(t) + r(t)h′(t)

⇒ 2r(t)r′(t) + r′(t)h(t) + r(t)h′(t) = 2r′(t)h(t) + r(t)h′(t)
⇒ 2r(t)r′(t) + r(t)h′(t)− r(t)h′(t) = 2r′(t)h(t)− r′(t)h(t)

⇒ 2r(t)r′(t) = r′(t)h(t)
⇒ 2r(t) = h(t) assuming that r′(t) 6= 0 which is a fair assumption.

So, we know that at all times the height is exactly twice the radius, that is
the height is exactly the diameter as desired.
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